eCM (Eur Cell Mater / e Cells & Materials) Not-for-profit Open Access
Created by Scientists, for Scientists
 ISSN:1473-2262         NLM:100973416 (link)         DOI:10.22203/eCM

2010   Volume No 19 – pages 205-213

Title: Bacterial biofilm formation versus mammalian cell growth on titanium-based mono- and bi-functional coating

Author: G Subbiahdoss, B Pidhatika, G Coullerez, M Charnley, R Kuijer, HC van der Mei, M Textor, HJ Busscher

Address:Department of Biomedical Engineering, University Medical Center Groningen and University of Groningen, P.O. Box 196, 9700 AD Groningen, The Netherlands

E-mail: h.c.van.der.mei at

Key Words: Biomaterials-associated infections, polymer brush, polyethylene glycol brush coating, U2OS osteoblast, Staphylococcus epidermidis, biofilm, tissue integration, non-adhesive fouling.

Publication date: May 13th 2010

Abstract: Biomaterials-associated-infections (BAI) are serious complications in modern medicine. Although non-adhesive coatings, like polymer-brush coatings, have been shown to prevent bacterial adhesion, they do not support cell growth. Bi-functional coatings are supposed to prevent biofilm formation while supporting tissue integration. Here, bacterial and cellular responses to poly(ethylene glycol) (PEG) brush-coatings on titanium oxide presenting the integrin-active peptide RGD (arginine-glycine-aspartic acid) (bioactive “PEG-RGD”) were compared to mono-functional PEG brush-coatings (biopassive “PEG”) and bare titanium oxide (TiO2) surfaces under flow. Staphylococcus epidermidis ATCC 35983 was deposited on the surfaces under a shear rate of 11 s-1 for 2 h followed by seeding of U2OS osteoblasts. Subsequently, both S. epidermidis and U2OS cells were grown simultaneously on the surfaces for 48 h under low shear (0.14 s-1). After 2 h, staphylococcal adhesion was reduced to 3.6±1.8 × 103 and 6.0±3.9 × 103 cm-2 on PEG and PEG-RGD coatings respectively, compared to 1.3±0.4 × 105 cm-2 for the TiO2 surface. When allowed to grow for 48 h, biofilms formed on all surfaces. However, biofilms detached from the PEG and PEG-RGD coatings when exposed to an elevated shear (5.6 s-1) U2OS cells neither adhered nor spread on PEG brush-coatings, regardless of the presence of biofilm. In contrast, in the presence of biofilm, U2OS cells adhered and spread on PEG-RGD coatings with a significantly higher surface coverage than on bare TiO2. The detachment of biofilm and the high cell surface coverage revealed the potential significance of PEG-RGD coatings in the context of the “race for the surface” between bacteria and mammalian cells.

Article download: Pages 205-213 (PDF file)

Acrobat Reader:

To read this article you will need to install Adobe Acrobat Reader on your computer. Should you experience any difficulty in reading the PDF file we suggest that you save the file to your computer BEFORE opening it from Adobe Acrobat.