eCM Journal
Created by Scientists, for Scientists

ISSN 1473-2262   NLM: 100973416 (link) The leading Journal of musculoskeletal research.
 

Home

Issues / Manuscripts

 

Supplements

Conferences

 About eCM Journal

 

 Scope

 Submission Instructions

 Editors

 Info on eCM

 Sponsors

 Societies

 Contact

 eCM Paper notification

 

  (Info)

 eCM Site search

 
 
 
   
 


2011   Volume No 21 – pages 130-143

Title: Effects of strontium-doped bioactive glass on the differentiation of cultured osteogenic cells

Author: J Isaac, J Nohra, J Lao, E Jallot, J-M Nedelec, A Berdal, J-M Sautier

Address: Laboratoire de Physiopathologie Orale et Moléculaire, Centre de Recherche des Cordeliers, INSERM, UMRS 872, Equipe 5, 15-21 rue de l’Ecole de Médecine, F-75270 Paris Cedex 06, France

E-mail: isaacjuliane at yahoo.fr

Key Words: Bioactive glass, strontium, osteoblast, cell differentiation, in vitro.

Publication date: February 8th 2011

Abstract: There is accumulating evidence that strontium-containing biomaterials have positive effects on bone tissue repair. We investigated the in vitro effect of a new Sr-doped bioactive glass manufactured by the sol-gel method on osteoblast viability and differentiation. Osteoblasts isolated from foetal mouse calvaria were cultured in the presence of bioactive glass particles; particles were undoped (B75) or Sr-doped with 1 wt.% (B75-Sr1) and 5 wt.% (B75-Sr5). Morphological analysis was carried out by contrast-phase microscopy and scanning electron microscopy (SEM). Cell viability was evaluated by the MTS assay at 24 h, 48 h and 72 h. At 24 h, day 6 and day 12, osteoblast differentiation was evaluated by assaying alkaline phosphatase (ALP) activity, osteocalcin (OC) secretion and gene expression of various bone markers, using Real-Time-PCR. Alizarin Red staining and ALP histoenzymatic localisation were performed on day 12. Microscopic observations and MTS showed an absence of cytotoxicity in the three investigated bioactive glasses. B75-Sr5 particles in cell cultures, in comparison with those of B75 and B75-Sr1, resulted in a significant up-regulation of Runx2, Osterix, Dlx5, collagen I, ALP, bone sialoprotein (BSP) and OC mRNA levels on day 12, which was associated with an increase of ALP activity on day 6 and OC secretion on day 12. In conclusion, osteoblast differentiation of foetal mouse calvarial cells was enhanced in the presence of bioactive glass particles containing 5 wt.% strontium. Thus, B75-Sr5 may represent a promising bone-grafting material for bone regeneration procedures.

Article download: Pages 130-143 (PDF file)

Acrobat Reader:
 

To read this article you will need to install Adobe Acrobat Reader on your computer. Should you experience any difficulty in reading the PDF file we suggest that you save the file to your computer BEFORE opening it from Adobe Acrobat.

Last modified December 18, 2012

Open Access / Author retains copyright

AO Foundation, Davos, Switzerland