eCM Journal
Created by Scientists, for Scientists

ISSN 1473-2262   NLM: 100973416 (link) The leading Journal of musculoskeletal research.
 

Home

Issues / Manuscripts

 

Supplements

Conferences

 About eCM Journal

 

 Scope

 Submission Instructions

 Editors

 Info on eCM

 Sponsors

 Societies

 Contact

 eCM Paper notification

 

  (Info)

 eCM Site search

 
 
 
   
 


2013   Volume No 25 – pages 190-203

Title: Modulation of anabolic and catabolic responses via a porous polymer scaffold manufactured using thermally induced phase separation

Author: NYC Yu, A Schindeler, L Peacock, K Mikulec, J Fitzpatrick, AJ Ruys, JJ Cooper-White, DG Little

Address: Orthopaedic Research & Biotechnology, Research Building, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW 2145, Australia

E-mail: nicole.yu at sydney.edu.au or: aaron.schindeler at sydney.edu.au

Key Words: Zoledronic acid; bisphosphonate; rhBMP-2; bone morphogenetic protein; bone tissue engineering; biodegradable polymer scaffold; thermally induced phase separation.

Publication date: February 27th 2013

Abstract: We describe two studies encompassing the iterative refinement of a polymer-based rhBMP-2 delivery system for bone tissue engineering. Firstly, we compared the bone-forming capacity of porous poly(D,L-lactic-co-glycolic acid) (PLGA) scaffolds produced by thermally induced phase separation (TIPS) with non-porous solvent cast poly(D,L-lactic acid) (PDLLA) used previously. Secondly, we examined the potential synergy between rhBMP-2 and local bisphosphonate in the PLGA scaffold system.
In vivo ectopic bone formation studies were performed in C57BL6/J mice. Polymer scaffolds containing 0, 5, 10 or 20 µg rhBMP-2 were inserted into the dorsal musculature. At all rhBMP-2 doses, porous PLGA produced significantly higher bone volume (BV, mm3) than the solid PDLLA scaffolds. Next, porous PLGA scaffolds containing 10 µg rhBMP-2 ± 0.2, or 2 µg zoledronic acid (ZA) were inserted into the hind-limb musculature. Co-delivery of local 10 µg rhBMP-2/2 µg ZA significantly augmented bone formation compared with rhBMP-2 alone (400 % BV increase, p < 0.01). Hydroxyapatite microparticle (HAp) addition (2 % w/w) to the 10 µg rhBMP-2/0.2 µg ZA group increased BV (200 %, p < 0.01). We propose that this was due to controlled ZA release of HAp-bound ZA. Consistent with this, elution analyses showed that HAp addition did not alter the rhBMP-2 elution, but delayed ZA release. Moreover, 2 % w/w HAp addition reduced the scaffold’s compressive properties, but did not alter ease of surgical handling.
In summary, our data show that refinement of the polymer selection and scaffold fabrication can enhance rhBMP-2 induced bone formation in our bone tissue engineering implant, and this can be further optimised by the local co-delivery of ZA/HAp.

Article download: Pages 190-203 (PDF file)

Acrobat Reader:
 

To read this article you will need to install Adobe Acrobat Reader on your computer. Should you experience any difficulty in reading the PDF file we suggest that you save the file to your computer BEFORE opening it from Adobe Acrobat.

Last modified February 27, 2013

Open Access / Author retains copyright

AO Foundation, Davos, Switzerland