Novel anti-infective implant substrates: Controlled release of antibiofilm compounds from mesoporous silica-containing macroporous titanium

A Braem2, K De Cremer1,3, K De Brucker4, N Delattin1, E Gerits1, B Neirinck2, K Vandamme4, JA Martens5, J Michiels1, J Vleugels2, BPA Cammue1,3, K Thevissen1

1Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20 Box 2460, 3001 Leuven, Belgium. 2Department of Materials Engineering (MTM), KU Leuven, Kasteelpark Arenberg 44 Box 2450, 3001 Leuven, Belgium. 3Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium. 4Biomaterials - BIOMAT, Department of Oral Health Sciences and Prosthetic Dentistry, KU Leuven and University Hospitals Leuven, Kapucijnenvoer 7 Box 7001, 3000 Leuven, Belgium. 5Centre of Surface Chemistry and Catalysis (COK), KU Leuven, Kasteelpark Arenberg 23 Box 2461, 3001 Leuven, Belgium

INTRODUCTION: Bone implants with open porosity enable fast osseointegration, but also present an increased risk of biofilm-associated infections. Since an implant, as a biocompatible surface, presents a favorable support for microbial adherence and because the local immune system is temporarily repressed at the implant/tissue interface due to the occurrence of a foreign body response, the implantation site is inherently at risk for microbial contamination [1,2]. To reduce microbial biofilm formation on titanium substrates, we designed a novel implant material enabling controlled release of antibiofilm molecules.

METHODS: The novel implant material consisted of a mesoporous SiO\textsubscript{2} diffusion barrier with controlled drug release functionality integrated in a macroporous Ti load-bearing structure. Using an in house made \textit{in vitro} tool consisting of Ti/SiO\textsubscript{2} disks in an insert set-up (Fig 1), through which molecules can diffuse from feed side to release side, a continuous release without initial burst effect of various broad-spectrum antibiofilm compounds was sustained for at least 9 days. We used the fungal pathogen \textit{Candida albicans} and the bacterial pathogen \textit{Streptococcus mutans} as a model to assess anti-infective properties of the new titanium substrates.

RESULTS: We found that the \textit{C. albicans} and \textit{S. mutans} biofilm growth on the compound-release side was significantly inhibited, establishing a proof-of-concept for the drug delivery functionality of mesoporous SiO\textsubscript{2} incorporated into a high-strength macroporous Ti-carrier.

DISCUSSION & CONCLUSIONS: Next-generation implants made of this composite material and equipped with an internal reservoir (feed side) can yield long-term controlled release of antibiofilm compounds, effectively treating infections on the implant surface (release side) over a prolonged time.

ACKNOWLEDGEMENTS: The research leading to these results has received funding from the Industrial Research Fund (IOF) of KU Leuven (IOF/KP/11/007), the Flemish government via the Methusalem grant to J.A.M. and the Hercules Foundation (projectZWO9-09). B.N., K.T. and N.D. acknowledge the receipt of a postdoctoral grant from FWO-Vlaanderen (1.2.B62.12N), from IOF (IOFm/05/022) and from IWT-Vlaanderen (IWT101095), respectively.

http://www.ecmjournal.org