REAL-TIME QUANTIFICATION OF MATRIX METALLOPROTEINASE AND INTEGRIN αvβ3 EXPRESSION DURING BIOMATERIAL-ASSOCIATED INFECTION IN A MURINE MODEL

Seyedmojtah Daghighi1, Jelmer Sjollema1,*, Rene J.B. Dijkstra1, Valery Jaspers2, Sebastian A.J. Zaat2, Henny C. van der Mei1, and Henk J. Busscher1

1University of Groningen and University Medical Centre Groningen, Department of Biomedical Engineering, Groningen, The Netherlands
2Department of Medical Microbiology, CINIMA (Centre for Infection and Immunity Amsterdam), Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands

Abstract

Biomaterial implants and devices increase the risk of microbial infections due to the biofilm mode of growth of infecting bacteria on implant materials, in which bacteria are protected against antibiotic treatment and the local immune system. Matrix-metalloproteinases (MMPs) and cell surface integrin receptors facilitate transmigration of inflammatory cells toward infected or inflamed tissue. This study investigates the relationship between MMP- and integrin-expression and the clearance of infecting bacteria on implant materials, in which microbial infections due to the biofilm mode of growth of biomaterial-adherent phagocytes express high levels of MMPs, and integrins in order to enable extracellular adhesion of leukocytes to the extracellular matrix (Hood et al., 2004). Integrins are transmembrane heterodimer receptors composed of α and β subunits, which mediate adhesion of leukocytes to the extracellular matrix (Hood and Cheresh, 2002). Integrin αvβ3, a receptor for a variety of extracellular matrix proteins containing arginine-glycine-aspartic acid (RGD) domains (Kerr, 1999; Hynes, 2002), facilitate cell migration, and mediate adhesion of monocytes and macrophages to adsorbed conditioning films on implanted biomaterial surfaces containing fibronectin (Kao et al., 2001; Garcia, 2005; Keselowsky et al., 2005) or vitronectin, collagen, fibronectin and albumin (Wilson et al., 2005; Anderson et al., 2008). To summarise, biomaterial-adherent phagocytes express high levels of MMPs, and integrins in order to enable extracellular adhesion of leukocytes to the extracellular matrix.

Biomaterials-Associated Infection (BAI) is a major complication in the use of biomaterial implants and devices for functional restoration. The onset of BAI is peri- or early post-operative bacterial contamination of the implant or surgical site, but bacteria can reach an implant site also after implantation through haematogenous spreading from infection elsewhere in the body (Busscher et al., 2012). Once adhering, the organisms adapt a so-called “biofilm mode of growth”, in which they embed themselves in a matrix of extracellular polymeric substances. In a biofilm, bacteria are protected against antibiotic treatment and the local immune system (Boelens et al., 2000a; Flemming and Wingender, 2010). Consequently, BAI often results in surgical replacement of the implant or device, not seldom involving substantial morbidity, mortality and high costs to the healthcare system (Busscher et al., 2012).

Implanted biomaterials provoke an inflammatory response, known as the Foreign Body Reaction (FBR). The onset of the FBR encompasses migration of neutrophils to the tissue adjacent to an implanted biomaterial (Anderson et al., 2008). This acute phase resolves between a few hours to days and progresses to a type of inflammation characterised by chronic infiltration of mononuclear leukocytes, particularly monocyte-derived macrophages (Hu et al., 2001; Luttikhuizen et al., 2006). The inflammatory response is orchestrated in part by matrix metalloproteinases (MMPs) and integrins (Garcia, 2005; Jones et al., 2008; MacLauchlan et al., 2009). In response to infectious stimuli, MMPs are expressed by activated leukocytes and are responsible for degradation of extracellular matrix components to facilitate migration of inflammatory cells, progression of inflammatory reactions and assisting in clearance of infection (Parks et al., 2004). Integrins are transmembrane heterodimer receptors composed of α and β subunits, which mediate adhesion of leukocytes to the extracellular matrix (Hood and Cheresh, 2002). Integrin αvβ3, a receptor for a variety of extracellular matrix proteins containing arginine-glycine-aspartic acid (RGD) domains (Kerr, 1999; Hynes, 2002), facilitate cell migration, and mediate adhesion of monocytes and macrophages to adsorbed conditioning films on implanted biomaterial surfaces containing fibronectin (Kao et al., 2001; Garcia, 2005; Keselowsky et al., 2005) or vitronectin, collagen, fibronectin and albumin (Wilson et al., 2005; Anderson et al., 2008). To summarise, biomaterial-adherent phagocytes express high levels of MMPs, and integrins in order to enable extracellular adhesion of leukocytes to the extracellular matrix.

Keywords: Immune response; bioluminescence; matrix metalloproteinase; fluorescence; integrin; infection; Staphylococcus aureus; implant.

*Address for correspondence:
Jelmer Sjollema
Department of Biomedical Engineering, W.J. Kolff Institute University Medical Center Groningen
P.O. Box 196, 9700 AD Groningen, The Netherlands
Phone number: +31503633149
FAX Number: +31503633159
E-mail: j.sjollema@umcg.nl
matrix remodelling and facilitate cell migration. These events lead to the release of cytokines and chemokines that can activate additional phagocytes. Therefore, these biomarkers play a pivotal role in the migration of leukocytes, and it is hypothesised that both biomarkers are increasingly expressed in the progression of bacterial clearance in a BAI.

Whereas a biomaterial implant or device may reduce the bactericidal activity of phagocytes (Zimmerli and Sendi, 2011), the host immune response may at the same time be activated by bacteria adhering to a biomaterial implant or present in surrounding tissue. In order to separate the role of infecting bacteria and the presence of a biomaterial implant or device in the immune response, we here apply bio-optical imaging in a murine model. Bio-optical imaging is increasingly used to monitor bacterial presence longitudinally in live animals (Daghighi et al., 2012). Bio-optical imaging can either be performed in a bioluminescence or fluorescence mode (Hwang et al., 2012; Ponomarev et al., 2004). A number of bioluminescent bacterial strains are available for longitudinal monitoring of bacterial persistence. When growing on implanted biomaterials, their bioluminescence strongly correlated with ex vivo culturing of bacteria from explanted biomaterials after sacrifice (Kadurugamuwa et al., 2003; Engelsman et al., 2009). In addition, fluorescence marker molecules have been validated for use in in vivo imaging, like MMPSense®680 (Clapper et al., 2011; Waschkau et al., 2013) and IntegriSense®750 (Kossodo et al., 2010; Snoeks et al., 2010; Valdivia et al., 2011), which are bio-activated by MMPs or targeted to integrin αvβ3, respectively.

The aim of this study is to assess the relationship between MMP- and integrin-expression and the clearance of infecting Staphylococcus aureus, one of the main causative organisms of BAI, in the presence and absence of an implanted biomaterial. To this end, Pebax® catheter sections (Wang et al., 2004) were used as a model material and subcutaneously implanted in mice, after which mice were injected with bioluminescent S. aureus Xen36. Bio-activatable and targeted fluorescence imaging probes to quantify the expression of MMPs and integrin αvβ3 were injected 2, 5 and 11 days after implantation of the biomaterial samples. Bio-optical imaging in the bioluminescence mode allows for the longitudinal monitoring of the clearance of staphylococci, while measurements in the fluorescence mode including molecular tomography, enable localisation of MMPs and integrin αvβ3 around the biomaterial sample. Animals were sacrificed either 7 or 16 days after implantation for ex vivo microbiological and histological evaluations.

Materials and Methods

Bacterial strain

Experiments were conducted with bioluminescent S. aureus Xen36 (PerkinElmer, Waltham, MA, USA), derived from S. aureus ATCC49525, a virulent and biofilm forming clinical isolate from a patient with bacteraemia (Francis et al., 2000) and used in earlier studies in murine models (Brand et al., 2010; Pribaz et al., 2011). Staphylococci were cultured from cryopreservative beads (Protect, Technical Surface Consultants, Heywood, UK) onto trypticase soy agar plates (TSA, Oxoid, Basingstoke, UK), containing 200 μg/mL kanamycin at 37 °C for 24 h in ambient air. Prior to each experiment, one highly bioluminescent colony was selected using an IVIS Imaging System (IVIS® Lumina II, Imaging System, PerkinElmer) to inoculate 5 mL of trypticase soy broth (TSB, Oxoid) at 37 °C for 24 h in ambient air. 100 μL of this culture was used to inoculate 10 mL of TSB and was grown for 16 h at 37 °C under continuous shaking at 120 rpm. Bacteria were harvested by centrifugation at 5000 g, for 5 min and washed twice with sterile 0.9 % NaCl, after which the bacterial pellet was suspended in the same solution and sonicated in an ice-water bath for 3 × 10 s at 30 W (Vibra cell model 375, Sonics and Materials, Newtown, CT, USA). Next, bacteria were resuspended in sterile 0.9 % NaCl to a final concentration of 10⁶ bacteria per mL, as determined in a Bürker-Türk counting chamber using phase contrast microscopy.

Fluorescent probes

MMPSense®680 (PerkinElmer) becomes fluorescent upon excitation around 680 nm with an emission wavelength of around 710 nm, after cleavage of its lysine-lysine bonds by active MMP-2, -3, -9 and -13 (Ntziachristos et al., 2002; Jones et al., 2012). IntegriSense®750 (PerkinElmer) is a targeted fluorescence imaging probe with an emission wavelength around 780 nm upon excitation with 750 nm wavelength light. The probe comprises a selective non-peptide small molecule integrin-antagonist that binds and accumulates at integrin αvβ3 receptors, predominantly marking the influx of immune cells, and remains localised for extended periods of time (Kossodo et al., 2010). These fluorescent probes have successfully been applied to monitor MMPs or integrins in angiogenesis (Chen et al., 2004), tumour microenvironment (Littlepage et al., 2010), atherosclerosis (Deguchi et al., 2006) and rheumatoid arthritis (Peterson et al., 2010). They can be used simultaneously because of their distinct and non-overlapping excitation and emission wavelengths.

Animals and surgical procedure

Animal experiments and experimental protocols were approved (ID-5770) by the Ethics Committee for Animal Experiments of the University of Groningen, The Netherlands. Experiments were performed in female Balb/c OlaHsd immune-competent mice, aged 6-8 weeks with an averaged body weight of 23 ±3.2 g (Harlan Netherlands, Horst, The Netherlands). Groups of five mice were housed in separate, ventilated cages with free access to water. In order to prevent feed-associated auto-fluorescence, the mice received an alfalfa-free diet (Diet W, Abdiets, Woerden, The Netherlands) ad libitum.

Mice were randomly assigned to four groups (see Table 1). During surgery, mice were placed on a heating mat and anaesthesia was induced with 3.5 %, and maintained at 1.5 % isoflurane/O₂ (Zeneca, Zoetermeer, The Netherlands). The dorsal side of the mice were shaved in order to prevent bioluminescent light scattering and
S Daghighi et al.

MMP- and integrin-expression in BAI

Table 1. Number of animals involved in the *in vivo* experiments for each of the four experimental groups.

<table>
<thead>
<tr>
<th>Experimental groups</th>
<th>Number of mice</th>
<th>Sacrificed at day 7</th>
<th>Sacrificed at day 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 No biomaterial sample</td>
<td>No bacteria</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2 No biomaterial sample</td>
<td>Bacteria</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>3 Biomaterial sample</td>
<td>No bacteria</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>4 Biomaterial sample</td>
<td>Bacteria</td>
<td>8</td>
<td>15</td>
</tr>
</tbody>
</table>

Note that only 10 out of the 15 mice sacrificed at day 16 in groups 3 and 4 were subjected to microbiological and histological analysis.

the skin was disinfected with 70% ethanol to reduce the surgical site infections. The ventral side of the mice were shaved as well in order to allow transmittance of the laser light during fluorescence molecular tomography (FMT). A 1 cm midline incision was made in the skin in the posterior cervical region and a subcutaneous pocket was created by blunt dissection. In the pockets of two groups of mice, sterile catheter sections, made of medical-grade polyether block amides (Pebax®, Raumedic®, Helmbrechts, Germany) were placed as biomaterial samples. Biomaterial samples cut out of the catheters were 1 cm in length and in order to avoid intraluminal bacterial colonisation, cut in half along their length. The biomaterial samples were aligned with the spine and the incisions were closed using a tissue adhesive (Dermabond, Ethicon, Somerville, NJ, USA). Two other groups of mice were subjected to surgery, but no biomaterial sample was inserted (sham-surgery). Buprenorfine (0.03 µg/kg) was administered subcutaneously once, as an analgesic directly after anaesthesia.

Eight mice of the sham-surgery group received an injection of 10 µL sterile saline, while 11 mice were injected with an inoculum of 10^7* staphylococci in 10 µL saline. In the groups of mice that had received a biomaterial sample, twenty-three mice were injected with 10 µL sterile saline, and 23 mice received an inoculum with 10^7* bacteria in 10 µL saline alongside the biomaterial sample. In order to prevent bacterial leakage through the incision, bacterial injections were administered 48 h after implantation, i.e., after wound closure. Moreover, this time interval also allowed us to analyse the expression of MMPs and integrin αvβ3 in the context of the foreign body reaction before bacterial injection. The relatively high inoculum of 10^7* bacteria appeared the lowest inoculum size leading to both culture positive peri-implant tissue biopsies and biomaterial implants in earlier BAI murine models (Broekhuizen et al., 2007).

For *in vivo* fluorescence imaging, mice under isoflurane/O₃ anaesthesia were injected with 2 nmol of each fluorescent probe in a volume of 150 µL for MMPSense®680 and 100 µL for IntegriSense®750 through retro-orbital vein injection at days 2, 5 and 11 days post-implantation.

Bio-optical imaging

In vivo bioluminescence imaging of bacterial presence

Bacterial clearance was evaluated using an *In Vivo* Imaging System (IVIS® Spectrum, PerkinElmer) on selected days over a period of 7 or 16 days. For imaging, mice were placed in the IVIS under 1.5% isoflurane/O₃ anaesthesia, with their back exposed to the camera. After acquiring a grey-scale photograph, a bioluminescence image was obtained (exposure time 5 min) using a 21 x 21 cm field of view, binning of 4, 1/f aperture and open filters. Images were automatically corrected for background noise. Regions of Interest (ROIs) of 5 cm² were manually created for each mouse and imaging session. Total photon counts over the ROIs were converted to photon fluxes (p/s) due to bioluminescence using Living Image software (PerkinElmer).

In vivo fluorescence imaging of MMP- and integrin-expression

The fluorescence fluxes generated from the MMPs and integrin αvβ3 probes were quantified in the IVIS® system 24 h after their administration, i.e., at 3, 6 and 12 days post-implantation and in addition to the bioluminescence measurements. Images were acquired using epi-illumination, with excitation/emission at 675/710 nm for MMPSense®680, and 720/820 nm for IntegriSense®750. These filter combinations were chosen to avoid leakage of excitation light through the emission filter and optimise the ratio between fluorescence from the probe and auto-fluorescence from murine tissue. The emission spectrum of bacterial bioluminescence is located between 400 and 600 nm, with a maximum around 500 nm and is not interfering with the fluorescence spectra of the probes. Manually created ROIs were positioned to capture all the light from the entire spot created by fluorescence light, scattered by the skin. All ROIs were of equal size (7 cm²) and shape for each mouse and imaging session.

Beam broadening due to scattering of fluorescent light is rigorously taken into account in a fluorescence molecular tomography system (FMT) to reveal the size and position of the fluorescence source (Ntziachristos et al., 2002). Therefore, four randomly selected mice in each group of infected and non-infected mice with an implanted biomaterial sample were imaged using FMT (FMT 2500™, PerkinElmer), when under anaesthesia for the IVIS analysis (Kossodo et al., 2010). Three-dimensional distributions of the probes around the implant site were obtained using dedicated FMT software with a resolution of 1 mm (i.e., voxel size is 1 mm³) and calibrated against the fluorescence flux of a 0.4 µM solution of each of the probes in 100 µL demineralised water, according to the manufacturer’s instructions. The 3D-images were...
acquired using trans-illumination with an excitation laser beam with a wavelength of 670 nm for MMPSense®680, and 745 nm for integriSense®750. Emission wavelengths were 690 and 780 nm respectively, as pre-configured by the manufacturer.

In order to determine to what extent MMP- and integrin-expression are co-localised and result from the presence of biomaterial samples, probe distributions around the biomaterial samples were analysed using autocorrelation functions. These autocorrelations were calculated for each mouse in a 2D-slice of the 3D-image, aligned along the coronal plane of the mouse at the position of the implant. Autocorrelations were calculated in the x-direction parallel to the length of the biomaterial sample and in the y-direction perpendicular to the sample length and over an angular width of ±10 degrees. In the x-direction, the autocorrelation was calculated using MATLAB routines (The MathWorks, Natick, MA, USA) according to:

\[
\text{autocorrelation}(h) = \frac{\sum_{i=1}^{n(h)} (F(x_i) * F(x_i + h))}{n(h)}
\]

in which \(F(x_i)\) is the fluorescence concentration at pixel location \(x_i\) and \(n(h)\) is the number of pixels at a distance \(h\). Autocorrelations in the y-direction were calculated by changing \(x\) into \(y\). Autocorrelations presented were normalised with respect to the autocorrelation at a distance of 1 mm from the biomaterial sample.

Microbiological and histological ex vivo evaluations

After sacrifice at days 7 or 16 (see Table 1), an incision was made in the dorsal skin, the subcutaneous layer with adjacent skin was prepared free to make the biomaterial sample visible and a disk-shaped standardised biopsy of 12 mm in diameter, comprising the biomaterial sample with surrounding tissue, was taken. Biopsies were cut in halves, for quantitative microbiological culture and histological analysis, respectively. Five randomly chosen biopsies from each of the groups with implanted biomaterial samples taken 16 days after sacrifice were only visually inspected for the signs of infection and not further processed.

For microbiological culturing, a biomaterial sample was carefully separated from the surrounding tissue and both were separately placed in 1 mL of 0.9 % NaCl. Next, the biomaterial sample and tissues were sonicated for 5 s in 0.9 % NaCl (500 µL), after which the samples were 10-fold serially diluted and plated on blood agar plates. Agar plates were incubated for 24 h at 37 °C after which the numbers of colony forming units (CFUs) were counted.

For histological analysis, biopsy specimens were fixed in 10 % phosphate-buffered formaldehyde, embedded in plastic (methylmethacrylate/butylmethacrylate; Merck Schuchart, Hohenbrunn, Germany), and 3 µm sections were cut, deplastified, stained with haematoxylin-eosin and examined by light microscopy, or immuno-stained for MMP-2 and MMP-9 with anti-MMP2/MMP-9 antibodies (Millipore, Amsterdam, The Netherlands), and visualised with Vector Red and Vector Blue, respectively. Images of the immuno-stained sections were recorded with a Nuance multispectral imaging camera (PerkinElmer), allowing display of the antigens in pseudo colours (Van der Loos, 2010).

Statistical analysis

Data were analysed using SPSS 16 (SPSS, Chicago, IL, USA). Bioluminescence and fluorescence fluxes are represented as medians with interquartile ranges for each group of mice. In vivo bio-optical imaging and ex vivo culturing data were analysed using a Mann-Whitney test to assess significant differences between groups of mice. \(P\)-values < 0.05 were considered to indicate a statistically significant difference.

Results

In vivo bioluminescence imaging

Bioluminescence fluxes from mice without and with implanted biomaterial samples are shown in Fig. 1. Initially, in the presence of staphylococci, the bioluminescence fluxes were equally high in groups of mice without (Fig. 1A) and with (Fig. 1B) an implanted biomaterial sample arising from the presence of bioluminescent \(S.\) aureus Xen36 as a function of time post-implantation. Data are presented as medians with interquartile ranges. Note that up to day 7 data are from 23 mice, while after day 7 data represent values of the remaining 15 mice, since 8 mice of the groups were sacrificed at day 7 (see also Table 1). The horizontal lines represent the average bioluminescence fluxes from mice that were not inoculated with bacteria (i.e., only saline).
1a) and with (Fig. 1b) biomaterial samples. Whereas the bioluminescence in the group of mice without a biomaterial sample steadily and consistently decreased over time in all mice, in the presence of a biomaterial sample strongly elevated levels of staphylococcal bioluminescence were observed in two mice, especially at days 7-9 post-implantation.

In vivo fluorescence imaging of MMPs and integrin αvβ3

Fig. 2 summarises the fluorescence fluxes in the different groups of mice at different time points post-implantation. These fluxes were much higher than the auto-fluorescence from biomaterial samples determined prior to fluorescence imaging. Three days post-implantation in absence of staphylococci, fluorescence was significantly higher in mice with an implanted biomaterial sample than in mice without an implanted biomaterial sample, and this difference continued to exist up to day 12. At day 6, staphylococcal presence increased the fluorescence fluxes from both probes significantly, both in the groups without and with implant. Twelve days post-implantation however, no significant differences related to the presence of bacteria were recorded, but the signal of the probes in the mice carrying an implant was still significantly ($p < 0.05$) higher than in mice without implant.

FMT images revealed that both probes distributed predominantly around the biomaterial samples (Fig. 3a). The concentrations of fluorophores showed high correlations over only 5 mm in the direction perpendicular to the length of a biomaterial sample for both MMP- and integrin probes, whereas correlations parallel to its length were high over 10 to 12 mm (Fig. 3b). Interestingly, the signals of the integrin probe showed higher correlations parallel to the length of a biomaterial sample than of MMP probes in all groups of mice, indicating that these probes did not fully co-localise, although co-localisation was stronger in the presence of staphylococci.

Ex vivo evaluation of biomaterial samples and surrounding tissues

Microbiological culturing

Seven days post-implantation, no significant differences in numbers of CFUs could be observed in tissue and biomaterial samples in both groups of bacterially challenged mice (Fig. 4). At 16 days post-implantation however, the number of CFUs were significantly lower in the mice without a biomaterial sample, whereas the number of CFUs in the mice with a biomaterial sample, both in the tissue and on the biomaterial sample, were not significantly lower. Visual inspections of randomly chosen biopsies revealed no clinical signs of infection, i.e., soft tissue swelling and pus formation.

Histological evaluation

Regardless of the presence of biomaterial samples, tissues of mice which had been inoculated with staphylococci and sacrificed at day 7 demonstrated strong inflammation with a dense infiltrate of phagocytic cells, predominantly neutrophils and macrophages (Fig. 5). The inflammatory reaction was milder at day 16 post-implantation than at day 7, with strongest inflammation in the mice with a biomaterial sample and bacteria. At 16 days, strong influx of cells expressing predominantly MMP-9, was observed adjacent to the biomaterial samples both in absence and presence of staphylococci (Fig. 6). In absence of implants the response was less intense.
Discussion

We evaluated the simultaneous expression of MMPs and integrin αvβ3 around an implanted biomaterial in absence and presence of S. aureus using bio-optical imaging in a murine model. Through the combined use of in vivo bioluminescence and fluorescence imaging techniques, it was established that bacterial clearance was faster in absence than in presence of an implanted biomaterial (Fig. 4), despite enhanced expression of MMPs and integrin αvβ3 in the latter case (Fig. 2). Apparently, expression rates of MMPs and integrin αvβ3 do not correlate with the efficacy of the immune system to clear S. aureus in experimental murine biomaterial-associated infection.

MMPs are involved in multiple physiological and pathological processes such as infections, both in humans and in mice (Lopez-Otin et al., 2009; Fanjul-Fernandez et al., 2010). Expression of MMPs by neutrophils and monocytes can be induced by infecting bacteria (Wang et al., 2005; Souza et al., 2009). Staphylococci also produce MMP-like proteases (Gooz et al., 2001; Medina et al., 2005) themselves that activate the MMPSense®680 probe (see Fig. 7). However, we assume that the fluorescence flux from staphylococcal MMP-like proteases can be neglected relative to the fluorescence flux due to MMPs of neutrophils and monocytes, since after staphylococcal inoculation, differences between numbers of bacteria in mice with and without an implanted biomaterial sample were found to be non-significant at day 6 (see Figs. 1 and 4), whereas a clear enhancement in fluorescence flux from MMPSense®680 was observed in the presence of an implanted biomaterial sample. Moreover, integrin expression paralleled MMP expression.

Fig. 3. Distribution of MMP activatable and integrin αvβ3 targeted probes in mice with an implanted biomaterial sample in absence and presence of a challenge with S. aureus, as obtained from 3D-fluorescence tomography (a). Autocorrelations of fluorescence distributions in mice that carry an implanted biomaterial sample in absence (left panel) or presence (right panel) of S. aureus Xen36 in the direction parallel and perpendicular to the length of a biomaterial sample at three time points after implantation. Error bars represent standard deviations of four mice in each group (b).
Integrins have been studied both in humans and in animal models of inflammation (Damjanovich et al., 1992; Singh et al., 2000) but there is no in vivo information regarding the activation of integrins during BAI. In vitro, integrins serve as adhesion molecules to mediate cell adhesion to protein-coated biomaterials and to stimulate bacterial uptake into phagocytic cells. It has been suggested that integrin signalling at the transcriptional level regulates MMP expression (Fowler et al., 2000). It may be hypothesised therefore, that MMPs and integrin activation are co-localised. The autocorrelation analysis (Fig. 3) demonstrates that the distribution of both biomarkers resembles the dimensions of the implanted biomaterial samples. However, the integrin signals aligned more strongly and over longer distances parallel to the length of the biomaterial samples than those of the MMPs. Integrins and MMPs thus were not fully co-localised, implying induction of expression of MMPs is not solely due to integrin signalling. The lack of co-localisation seems to disappear as soon as staphylococci are present. This may be due to the fact that staphylococci, when evenly distributed over the surface of the biomaterial sample, give rise to MMP activation in immune cells (Wang et al., 2005; Souza et al., 2009), in addition to the activation caused by the biomaterial itself. No differences were found in the distributions of biomarkers perpendicular to the lengths of the biomaterial samples, although integrins are cell wall associated while MMPs are excreted.

As a major advantage of bio-optical imaging, bacterial persistence around an implanted biomaterial and the associating FBR can be monitored in a quantitative way in one and the same animal, strongly reducing the numbers of animals needed. At day 16, the bioluminescence of the mice correlated with results from microbiological culturing and the decrease in fluorescence fluxes due to activation both MMP and integrin probes correlated with the decrease in the density of inflammatory cells from day 7 to day 16 in histologically examined specimens.

In conclusion, through the combined use of bioluminescent and fluorescent in vivo imaging techniques, it has been demonstrated for the first time that MMP and integrin expression are simultaneously enhanced in the presence of staphylococci or biomaterials for up to 6 days post-implantation in mice. Activation was strongest in the presence of staphylococci together with an implanted biomaterial, which confirms our hypothesis. In accordance with the notion that biomaterials increase the susceptibility to infection, bacterial clearance was higher in the absence than in the presence of implanted biomaterials, indicating that expression of MMPs and integrin was not correlated with an effective immune response and bacterial clearance in BAI. As a protracted and high level pro-inflammatory response may be associated with increased susceptibility to infection (Boelens et al., 2000b), the up-regulated expression of MMPs and integrin may in fact be indicators of an exaggerated inflammatory response, which may
Fig. 5. Haematoxylin-eosin stained sections of biopsies retrieved from mice subjected to sham surgery or with implanted biomaterial samples, injected with saline or with *S. aureus* Xen36, 48 h after surgery, after 7 (left panel) and 16 (right panel) days post-surgery. Seven days post-surgery, a high density of purple-stained neutrophils and macrophages can be seen in all groups, except in the group with no implanted biomaterial sample and in absence of staphylococci. In comparison, 16 days after sacrifice, biopsies in all groups showed a less intense inflammatory response. Bars indicate 50 µm; arrows indicate the location of the interface with the biomaterial sample.
Fig. 6. MMP-2 and MMP-9 expression in tissue of mice in absence and presence of S. aureus for the sham-surgery group (without an implanted biomaterial sample), and the group of mice with implanted biomaterial samples after sacrifice at day 16. Sections were stained for MMP-2 (red) and MMP-9 (blue). The left panels are light microscopic images and the right panels are pseudo-colour images of corresponding sections. MMP-2 expression was seen in muscle fibres (e.g., in sham-surgery group with bacteria). Bars represent 20 µm.
be the cause of increased susceptibility to infection in patients carrying a biomaterial implant or device, rather than a sign of an effective immune response. The enhanced fluorescence from fluorescent probes early after BAI may help in distinguishing inflammation due to a sterile implant and BAI itself. Further studies may pave the way for clinical application of fluorescence imaging in image-guided implant debridement and support decision-making regarding antibiotic treatment of BAI or immediate implant replacement.

Acknowledgments

The authors would like to thank Martijn Riool and Leonie de Boer for histological evaluations and Peter Plomp for assistance in animal experiments. This research forms part of the Project P4.01 NANTICO of the research program of the BioMedical Materials institute, co-funded by the Dutch Ministry of Economic Affairs.

References

Discussion with Reviewers

R. Luginbuehl: Please elucidate on the selected animal model, i.e., why is a subcutaneous model chosen in conjunction with catheters that are implanted typical in spaces with “high liquid flows”. In addition subcutaneous spaces are typically lower in oxygen concentration and thus, I am wondering about the effect on the selected strains is as they are cultivated at norm Ox levels?

Authors: We agree with the reviewer that catheters are normally placed in spaces with liquid flows. The Pebax® catheter was used as a model biomaterial and not used as a catheter. Moreover, we did not want to study catheter-related infection, in which case indeed we would have chosen another implantation site. Accordingly, we did not verify the effect of varying Ox-levels.

R. Luginbuehl: Why was this specific animal model selected? Since catheter-related infections are not the objective of the research study, the selected model device has to be even more questioned as the tube offers a good protection for the bacteria. One of the findings was that “bacterial clearance from tissue was higher in absence of biomaterials” – which I consider is obvious as the bacterial proliferation is fundamentally different. The tube is an incubator for bacteria well protected from the immune system and clearance and a steady source of new bacteria. In my opinion a non-hollow implant would have done a better job.

Authors: The reviewer is entirely right, which is exactly the reason why we cut the catheter sections in half along their length.

D. Grainger: This statement is intriguing: “differences between numbers of bacteria in mice with and without a catheter section were found to be non-significant at day 6 (see Figs. 1 and 4)…” What does this say about BAI in this context? That the host clears or tolerates pathogens in each context equally? This is important as it runs against some of the BAI published dogma that bacteria are readily cleared from normal wounds but not from implant-containing wounds.

Authors: The differences between both groups were significant at later time points (at day 16, see Fig. 4). In the present experiments, bacterial clearance was slow in mice without implants. We do not think this necessarily runs against present BAI dogmas, because the rate at which bacteria are cleared clearly depends on the location and the surface characteristics of the implant.

D. Grainger: Is it possible that Xen36 produces some of its bioluminescence that out-survives the bacteria in the tissue site, and leaves an optical emission signature after these bacteria are dead or within the phagocytes? This could explain the 6-day data where both implant and non-implant infections show the same optical signal.
Authors: This is an intriguing question. Bioluminescence is a very sensitive marker for the viability of bacteria. Reduction in the production of ATP and NADPH and availability of oxygen will immediately result in a decrease of bacterial bioluminescence, probably faster than due to the depletion of luciferase. It is well known that bacteria may survive in tissue even within macrophages, but it is unknown however to what extent these bacteria are still able to produce bioluminescence or possibly enhance the production of NADPH counteracting the hostile environment and enhancing bioluminescence radiance.

D. Grainger: Could you include the following information about Xen36? The Xen40 model bioluminescent bacterial product is transformed genetically from the highly reported, virulent osteomyelitis clinical isolate, UAMS-1 (Elasri et al., 2002, additional reference). The Xen36 strain is derived from the bacteraemia clinical isolate ATCC 49525 Pribaz et al., 2011, text reference). Additional significant Xen36 infection/luminescent characterisation for this paper is further reported in Bernthal et al. (2010) and Bernthal et al. (2011) (both additional references).

Authors: Thank you for this comment. We agree that it is useful to add the information concerning virulence and biofilm forming character of the S. aureus Xen36 strain.

Additional References

