eCM (Eur Cell Mater / e Cells & Materials) Not-for-profit Open Access
Created by Scientists, for Scientists
 ISSN:1473-2262         NLM:100973416 (link)         DOI:10.22203/eCM

2016   Volume No 31 – pages 59-78

Title: Biomechanical signals guiding stem cell cartilage engineering: from molecular adaption to tissue functionality

Authors: Y Zhang, S Chen, M Pei

Address: Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, One Medical Center Drive, Morgantown, WV 26506-9196, USA

E-mail: mpei at hsc.wvu.edu

Key Words: Biomechanics, cartilage regeneration, extracellular matrix, stiffness, stem cell.

Publication date: January 5th 2016

Abstract: In vivo cartilage is in a state of constant mechanical stimulation. It is therefore reasonable to deduce that mechanical forces play an important role in cartilage formation. Mechanical forces, such as compression, tension, and shear force, have been widely applied for cartilage engineering; however, relatively few review papers have summarized the influence of biomechanical signals on stem cell-based neo-cartilage formation and cartilage engineering in both molecular adaption and tissue functionality. In this review, we will discuss recent progress related to the influences of substrate elasticity on stem cell chondrogenic differentiation and elucidate the potential underlying mechanisms. Aside from active sensing and responding to the extracellular environment, stem cells also could respond to various external mechanical forces, which also influence their chondrogenic capacity; this topic will be updated along with associated signaling pathways. We expect that these different regimens of biomechanical signals can be utilized to boost stem cell-based cartilage engineering and regeneration.

Article download: Pages 59-78 (PDF file)
DOI: 10.22203/eCM.v031a05