High hopes have been pinned on regenerative medicine strategies in order to prevent the progression of cartilage damage to osteoarthritis, particularly by autologous chondrocyte implantation (ACI). The loss of chondrocyte phenotype during in vitro monolayer expansion, a necessary step to obtain sufficient cell numbers, may be a key limitation in ACI. In this study, it was determined whether a shorter monolayer expansion approach could improve chondrogenic differentiation. The effects of two supplement types, foetal bovine serum (FBS) and Stemulate™ (a commercial source of human platelet lysate), on the expansion and re-differentiation potential of human chondrocytes, isolated from five individuals, were compared. Chondrocytes were expanded with 10% FBS or 10% Stemulate™. Pellets were cultured for 28 d in chondrogenic differentiation medium and assessed for the presence of cartilage matrix molecules and genes associated with chondrogenicity. Stemulate™ significantly enhanced the proliferation rate [average population doubling times: FBS, 25.07 ± 6.98 d (standard error of the mean, SEM) vs. Stemulate™, 13.10 ± 2.57 d (SEM)]. Sulphated glycosaminoglycans (sGAG), total collagen and qRT-PCR analyses of cartilage genes showed that FBS-expanded chondrocytes demonstrated significantly better chondrogenic capacity than Stemulate™-expanded chondrocytes. Histologically, FBS-expanded chondrocyte pellets appeared to be more stable, with a more intense staining for toluidine blue, indicating a greater chondrogenic capacity. Although Stemulate™ positively influenced chondrocyte proliferation, it had a negative effect on chondrogenic differentiation potential. This suggested that, in the treatment of cartilage defects, Stemulate™ might not be the ideal supplement for expanding chondrocytes (which maintained a chondrocyte phenotype) and, hence, for cell therapies (including ACI).

Keywords: Human platelet lysate, Stemulate™, foetal bovine serum, human chondrocytes, cartilage, autologous chondrocyte implantation.

Address for correspondence: Dr Nicola J. Kuiper, Institute of Science and Technology in Medicine (ISTM), University of Keele, Arthritis Research Centre, The Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, UK

Introduction

Damaged articular cartilage has a limited potential for healing and untreated cartilage defects often progress to osteoarthritis (OA) (Davies-Tuck et al., 2008). Regenerative medicine strategies have been formulated to meet the challenge of preventing progression to OA; one such strategy is autologous chondrocyte implantation (ACI) (Nawaz et al., 2014). ACI has evolved over 20 years, but chondrocytes are still the preferred cell choice. In brief, autologous chondrocytes are harvested by arthroscopy from a lesser weight-bearing area of the joint, expanded in monolayer culture and re-implanted into the damaged area under a natural or synthetic membrane by an open joint surgical procedure (Brittberg et al., 1994). Robert Jones & Agnes Hunt (RJAH) Hospital, Oswestry and others report a high percentage of good to excellent clinical results (Bhosale et al., 2009; Henderson et al., 2003). Although there is limited long-term follow-up data, especially from the modern methods of ACI, positive clinical results are beginning to emerge. Nawaz et al. (2014) report a 78% at 5 years and 51% at 10 years ACI graft survival
for 827 patients. A robust economic model, based on a systematic review, indicates that ACI is cost-effective as compared with alternative procedures, providing long-lasting improvements in symptoms and eventually reducing the need for knee joint replacements (Mistry et al., 2017; Web Ref. 1). Overall, the consensus is that ACI is more effective if used early following a cartilage injury and if it is the first attempt at a surgical intervention. Further refinement of ACI will ultimately enhance clinical outcomes and this, in part, is one of the goals of the present study.

To obtain sufficient cell numbers from small cartilage biopsies, the chondrocytes need to undergo in vitro expansion. The loss of chondrocyte phenotype, known as de-differentiation (Benya and Shaffer, 1982; Schnabel et al., 2002), during in vitro expansion on tissue culture plastic is a key limitation of ACI. During de-differentiation, chondrocytes lose their rounded morphology and decrease gene and protein expression of collagen II and aggrecan, both key components of the articular cartilage extracellular matrix (ECM). Consequently, de-differentiation decreases the capacity of re-implanted chondrocytes to regenerate functional cartilage (Schulze-Tanzil, 2009). At the RJAH Hospital, Oswestry, most of the freshly isolated chondrocytes usually undergo two passages because de-differentiation is known to occur in as few as three passages (Kang et al., 2007). Nevertheless, further minimising the conditions that promote chondrocyte de-differentiation may improve ACI.

Current standard protocols for chondrocyte expansion involve growth medium supplemented with foetal bovine serum (FBS), human autologous serum (AS) or serum-free medium. While FBS is used traditionally for in vitro chondrocyte expansion, an increase in demand and limited stocks are constantly increasing its price. FBS is a poorly defined mixture of components that can contain endotoxins, prion and viral proteins (Jochems et al., 2002; Selvaggi et al., 1997; van der Valk et al., 2010). Current good manufacturing practice (GMP) guidelines state that animal products should be replaced by human alternatives, wherever possible, for translating into cell therapies (Giancola et al., 2012; Unger et al., 2008; World Health Organisation, 1992; World Health Organization, 1991). Human AS would seem the ideal solution, but patient-to-patient variability can negatively impact upon key parameters, such as chondrocyte growth and quality (Harrison et al., 2000). Further, a relatively large volume of blood is required to perform chondrocyte expansion for ACI and this can be uncomfortable for the patients. A preferred alternative is defined serum-free growth media, but these media are supplemented with expensive growth factors that need to be replenished regularly during chondrocyte expansion. Given the issues described, other options are needed.

The use of platelet lysate for in vitro cell proliferation began in the 1980s (Choi et al., 1980). Doucet et al. (2005) describe the preparation and application of human platelet lysate (HPL) for expanding mesenchymal stem cells. Further studies show both autologous and allogeneic HPL to be superior to FBS in enhancing cell proliferation (Burnouf et al., 2016; Hildner et al., 2015; Hofbauer et al., 2014; Kim et al., 2015; Trojahn Kølle et al., 2013). HPL eliminates the risk of cross-species contamination, solves standing ethical considerations and meets the GMP guidelines. In addition, it contains high levels of growth factors and cytokines and a range of vitamins and minerals that are also present in FBS and human AS (Hemeda et al., 2014; Shih and Burnouf, 2015). HPL is created from large donor pools, reducing the variability observed with other serum types. However, there are limitations to HPL use, including the potential risk of contamination with human viruses, some of which are screened for, including HIV. Many studies show that 5-10 % (v/v) HPL is superior to 10 % (v/v) FBS in supporting cell expansion in several different cell types (King and Buchwald, 1984; Mojica-Henshaw et al., 2013; Muraglia et al., 2014; Reinisch et al., 2007; Trojahn Kølle et al., 2013; Witzeneder et al., 2013). A HPL concentration of 10 % (v/v) supports cell proliferation at levels comparable to FBS (Burnouf et al., 2016; Hemeda et al., 2014; Hildner et al., 2015; Hofbauer et al., 2014). Only a handful of studies use HPL as an in vitro tool for human chondrocyte expansion (Gaißmaier et al., 2005; Hildner et al., 2015; Moreira Teixeira et al., 2012; Muraglia et al., 2014; Spreafico et al., 2009). Even fewer investigate the recovery of chondrocyte phenotype, known as re-differentiation, in 3-dimensional (3D) culture when the HPL is excluded from the re-differentiation media (Hildner et al., 2015). With ACI therapy in mind, it is important to ensure that the expanded chondrocytes have a chance to recover their chondrogenic phenotype in 3D culture without further exposure to relatively high levels of platelet-derived growth factors, which increase cell proliferation.

Stemulate™ (Cook Regentec, Indianapolis, IN, USA), a commercially available source of HPL, is prepared according to GMP guidelines, using large donor pools from accredited blood centres. Given that Stemulate™ is used to expand a range of cell types, including adipose-derived mesenchymal stem cells (MSCs) and bone-marrow MSCs, it could be an alternative supplement to increase chondrocyte proliferation for cartilage cell therapy (Badowski et al., 2017; Juhl et al., 2016; Mangum et al., 2017; Riis et al., 2016; Sondergaard et al., 2017). Stemulate™ could reduce time in monolayer culture and reduce exposure to tissue-culture plastic, which in turn could reduce the risk of de-differentiation. The aim of the current work was to determine whether Stemulate™ could be a suitable alternative serum supplement to FBS for human chondrocyte expansion by assessing growth characteristics and cell morphology. Further, by using chondrogenic medium for both sets of chondrogenic pellets during re-differentiation in
3D culture, the aim was to assess the recovery of chondrocytes and determine their ability to produce ECM.

Materials and Methods

Chondrocyte isolation and monolayer expansion

Fully informed consent was obtained from five individuals undergoing total knee replacement surgery at R JA H Hospital, Oswestry, with ethical approval (11/NW/0875). Full depth cartilage was removed from macroscopically normal areas of the femoral condyle from three male and two female individuals with a mean age of 67 years (range: 55-75 years). Chondrocytes were isolated following an established protocol (Harrison et al., 2000). Briefly, 100-300 mg of cartilage tissue were placed into 10 mL Dulbecco’s modified Eagle’s medium (DMEM)/F12 (11330-057; Gibco) containing 0.03 mg/mL deoxyribonuclease I (D4263; Sigma-Aldrich) and 0.83 mg/mL type XI collagenase (C9407; Sigma-Aldrich). Digestion was performed for 16 h in a T25 tissue culture flask (Sarstedt) at 37 °C and 5% CO₂. The digest was filtered through a 0.2 µm cell strainer and chondrocytes were pelleted at 750 × g for 10 min. After that >98% cell viability was verified using trypan blue (T8154; Sigma-Aldrich), the chondrocytes were plated into T175 tissue-culture flasks at a density of 5 × 10⁶ cells/cm² in DMEM/F12 supplemented with 0.5 % (w/v) penicillin-streptomycin-ampicillin (17-745E; Lonza), 0.5 % (w/v) ascorbate (A4544; Sigma-Aldrich), 1% (v/v) insulin-transferrin-selenium (51500-056; Gibco), 20 ng/mL transforming growth factor-β1 (100-21; Peprotech), 10 nM dexamethasone (D4902; Sigma-Aldrich) and 3.2 µg/mL L-proline (P0380; Sigma-Aldrich). The chondrocytes (2.5 × 10⁶ cells) were transferred to 1.5 mL Eppendorf® tubes and centrifuged at 750 × g for 7 min, to create spherical pellets. Pellets were cultured in 500 µL of chondrogenic medium. Medium was replenished twice weekly.

Pellet processing for analyses

Pellets were assessed at day 0, 7, 14, 21 and 28. For biochemical assays, pellets (n = 5) were digested in 1 mg/mL proteinase K (25530-015; Ambion) in 100 mM ammonium acetate (09691; Sigma-Aldrich) for 2 h at 60 °C. Proteinase K was inactivated for 5 min at 100 °C and samples were stored at −20 °C. For histology, pellets (n = 4) were placed onto Whatman filter paper (Whatman, Kent, UK), snap frozen in liquid-nitrogen-cooled n-hexane and stored at −80 °C. For gene expression analysis, pellets (n = 3) were prepared for RNA extraction by homogenisation in 350 µL RLT lysis buffer containing 1% (v/v) β-mercaptoethanol (M6250; Sigma-Aldrich) using a 21 G needle and syringe (1053393; QIAGEN) and stored at −80 °C.

Pellet cell number

Cell number was determined using the PicoGreen® fluorescent DNA quantification kit (17916; Invitrogen), with lambda DNA as standard (1 ng/mL-1 µg/mL). Duplicate samples and standards were transferred to a 96-well plate and fluorescence was read at an excitation of 480 nm and emission of 520 nm using a FLUOstar Omega microplate reader (BMG, Ortenberg, Germany). Cell number was calculated using the widely reported value of 7.7 pg of DNA per chondrocyte (Kim et al., 1988).

Total sGAG content in the pellets

The total sGAG was determined using 1,9-dimethylmethylene blue (DMMB) (Farnsdale et al., 1986). All reagents were procured from Sigma-Aldrich. Chondroitin sulphate A from bovine trachea (C9819) was used as standard (0-200 µg/mL). In brief, 4 mg DMMB (341088) were diluted in 250 mL distilled water containing 0.76 g glycine (G5516) and 0.595 g sodium chloride (S5886) to a final pH of 3.0. Duplicate samples and standards were transferred to a 96-well plate and mixed with 200 µL DMMB dye. Absorbance was read at 530 nm using a FLUOstar Omega microplate reader (BMG).

Total collagen content in the pellets

The total collagen content was determined by a hydroxyproline assay (Brown et al., 2001). All reagents were procured from Sigma-Aldrich. Hydroxyproline standards (0-0.1 µg/mL; H5,440-9) were prepared in distilled water. 100 µL of each sample were hydrolysed.
in 100 µL of 10 M hydrochloric acid (19068) for 16 h at 108 °C. On cooling, the samples were neutralised with 800 µL of 1 M sodium hydroxide (S5881). Duplicate samples and standards were transferred to a 96-well plate. 100 µL of oxidation buffer [600 mL isopropyl alcohol, 330 mL distilled water, 390 mL citrate/acetate buffer (1 L consists of 34 g sodium hydroxide (S5881), 34 g citric acid monohydrate (C7129) and 120 g sodium acetate trihydrate (32318-M)), pH 6.0] were used as a negative control. Oxidation solution [100 µL; 300 mg chloramine T (402869) dissolved in 50 mL oxidation buffer] was added to all samples and standards. The plate was incubated at room temperature for 5 min. Ehrlich’s reagent [100 µL; 6 g p-dimethylaminobenzaldehyde (156477) dissolved in a mixture of 16 mL of 50 % perchloric acid (244252) and 52 mL of isopropyl alcohol] was added to each well and, then, the plate was sealed and incubated in a 60 °C water bath for 45 min. Absorbance was measured at 570 nm using a FLUOstar Omega microplate reader (BMG) and total collagen was calculated using the widely reported multiplication factor of 7 (Sims et al., 2000).

Histology of the frozen pellets
The frozen pellets were mounted onto pre-cooled chucks with optimal cutting temperature (OCT) compound (00.090.112; Sakura Finetek, Zoeterwoude, the Netherlands). All stains were procured from VWR International. 7 µm-thick sections were collected onto poly-L-lysine pre-coated slides (MBC-0102-54A; Cell Path, Newtown, UK) and stained with haematoxylin (350604T) and eosin (34197) or toluidine blue (340774Y), according to Roberts and Menage (2004). Sections were imaged by light microscopy (Leitz, Wetzlar, Leica Microsystems GmbH, Stuttgart, Germany) using ×6.3, ×25 and ×40 objective lenses. Images were captured using

Table 1. Genes used in qPCR analysis. Genes were selected to determine the chondrogenic phenotype of the cells and if the chondrocytes had de-differentiated to a hypertrophic state.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Official name and species</th>
<th>Amplicon length</th>
<th>Entrez ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference genes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPRT1</td>
<td>Hypoxanthine phosphoribosyltransferase 1 (human)</td>
<td>130 (NM_000194)</td>
<td>3251</td>
</tr>
<tr>
<td>TBP</td>
<td>TATA box binding protein (human)</td>
<td>132 (NM_001172085)</td>
<td>6908</td>
</tr>
<tr>
<td>Chondrogenic markers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACAN</td>
<td>Aggrecan (human)</td>
<td>62 (NM_001135)</td>
<td>176</td>
</tr>
<tr>
<td>COL2A1</td>
<td>Collagen type 2 alpha 1 (human)</td>
<td>95 (NM_001844)</td>
<td>1280</td>
</tr>
<tr>
<td>SOX9</td>
<td>SRY (sex determining region Y)-box 9 (human)</td>
<td>112 (NM_000346)</td>
<td>6662</td>
</tr>
<tr>
<td>De-differentiation markers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COL1A1</td>
<td>Collagen type 1 alpha 1 (human)</td>
<td>118 (NM_000088)</td>
<td>1277</td>
</tr>
<tr>
<td>Hypertrophic markers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALK1/ACVRL1</td>
<td>Activin A receptor type II-like 1 (human)</td>
<td>74 (NM_000020)</td>
<td>94</td>
</tr>
<tr>
<td>COL10A1</td>
<td>Collagen type 10 alpha 1 (human)</td>
<td>91 (NM_000493)</td>
<td>1300</td>
</tr>
</tbody>
</table>

qRT-PCR to assess gene expression in the pellets
mRNA was extracted using the QIAGEN RNeasy mini kit as per manufacturer’s instructions. mRNA was reverse-transcribed in a Progene thermocycler (Techne, Staffordshire, UK) using a high-capacity cDNA reverse transcription kit (4368814; Applied Biosystems) following the manufacturer’s instructions. qRT-PCR was performed on three pellet replicates (from each patient) to determine gene expression relative to two reference genes, according to published guidelines (Bustin et al., 2009): hypoxanthine-guanine phosphoribosyltransferase-1 (HPRT1 human; RT00059066) (Foldager et al., 2009; Rushton et al., 2014) and TATA box-binding protein (TBP; QT00000721) (Foldager et al., 2009; Pombo-Suarez et al., 2008) were selected based on low co-efficiencies of variance across both supplement types (data not shown). Several genes (Table 1) were chosen to determine the chondrogenic phenotype after re-differentiation. All genes, including reference genes, were procured from QIAGEN. Gene expression was measured relative to the reference genes and normalised to the cell number. Relative gene expression profiles were determined by the comparative Cₜ method (Schmittgen and Livak, 2008).
a DS-Fi1 camera and analysed with NIS-Elements BR imaging software (Nikon). Images were white-balanced using Photoshop Elements (Adobe). To semi-quantify the toluidine blue staining intensity, four central images of each pellet were randomly selected and the integrated density was determined using ImageJ Software (NIH) according to the published methodology (Jensen, 2013; Owida et al., 2017; Prasad and Prabhu, 2012).

Statistical analyses
All independent outcomes (PDTs, cell number, sGAG, total collagen, qPCR and staining intensity), patient variability and differences between the two supplement types over the time course were analysed using a multilevel model. Supplement type and time points were considered fixed variables and the patient was considered a random variable (random intercept). All qPCR data were log-transformed before the analysis, to make the data fit a normal distribution.

Cell number, sGAG and total collagen data (n ≥ 4 per time point per patient, 5 patients in total) were expressed as mean ± standard error of the mean (SEM). Gene expression data (n = 3 per time point per patient, 5 patients in total) were shown as a box plot, with the box representing the second and third quartiles, the horizontal line inside the box representing the median and the whiskers either side of the box representing the lower and upper quartiles. All statistical analyses were performed with SPSS statistical software (version 24; IBM) and, for all analyses, p < 0.05 was deemed to denote statistical significance.

Results
Stemulate™ positively influenced proliferation of chondrocytes in monolayer culture
For all 5 patients, the chondrocytes expanded in Stemulate™ (mean PDT: 13.10 ± 2.57 d) proliferated quicker than the chondrocytes expanded in FBS (mean PDT: 25.07 ± 6.98 d, p = 0.050). Patient variability was considered not statistically significant (p = 0.48) in affecting the PDT. Both sets of chondrocytes underwent less than 2 absolute population doublings throughout passages 1, 2 and 3 (Fig. 1). No statistically significant difference was measured in population doublings between the two sera supplements (p = 0.527) or at any passage (p = 0.50). Patient variability was considered not statistically significant (p = 0.445) in affecting population doublings.

Chondrocytes expanded in both FBS and Stemulate™ were seeded at an equal cell density upon chondrocyte isolation, after which both sets of chondrocytes showed a significant increase in cell number over time (p < 0.001; Fig. 2). Chondrocytes expanded in Stemulate™ demonstrated a significantly larger increase in cell number as compared to chondrocytes expanded in FBS (p = 0.014). Patient variability was considered not statistically significant (p = 0.296) in affecting cell number in monolayer.

Fig. 3 shows the morphology of the human chondrocytes (day 4 of each culture) in the presence of either Stemulate™ or FBS during passage 0, 1 and 2. For Stemulate™-expanded chondrocytes, markedly more chondrocytes were present and they appeared to cluster together at all passages. For both supplement types, chondrocytes appeared elongated and flattened, with little difference in their cell shape at all passages.

Stemulate™ negatively influenced the re-differentiation potential of chondrocytes in 3D pellet culture
To investigate whether the removal of Stemulate™ at the end of chondrocyte monolayer expansion resulted in delayed ECM production in 3D pellet culture, a 28 d time course was performed. 3D pellets were assessed for cell number (Fig. 4), total sGAG (Fig. 5), total collagen (Fig. 6) and gene expression by q-PCR (Fig. 7).

For both supplement types, cell number (Fig. 4) remained consistent throughout the time course (p = 0.84). This was expected since the 3D pellet conformation should enable the chondrocytes to recover their morphology and prevent further
proliferation. Total sGAG (Fig. 5) and total collagen (Fig. 6) production were normalised to cell number. Chondrocytes expanded in both supplement types demonstrated a steady and significant increase in sGAG production across all time points \((p < 0.001)\) (Fig. 5). sGAG concentration was higher in FBS as compared to StemulateTM across all time points \((p = 0.009)\), as determined by multi-level modelling. A significant sharp increase in sGAG concentration at day 14 was observed for FBS-expanded chondrocytes \((p < 0.001)\), with a slight levelling off in sGAG production at day 28 for both supplements. No evidence of variability among individual patients at any time point was detected \((p = 0.60)\) (Fig. 5).

Collagen production demonstrated a significant interaction between treatment and time \((p = 0.001)\) (Fig. 6). Both supplement types showed a similar pattern of relatively steady levels until a sharp increase between day 21 and 28, with levels being significantly higher in FBS as compared to StemulateTM \((p = 0.001)\). Again, there was no evidence of variability among individual patients at any time point \((p = 0.26)\) (Fig. 6).

RT-qPCR was performed at day 0, 21 and 28; relative gene expression profiles were determined by the comparative \(C_{\text{t}}\) method (Schmittgen and Livak, 2008) and normalised to the cell number. Expression of \(COL1A1\), \(COL10A1\) or \(ALK1\) was not detected in either supplement type. For the key chondrogenic markers \(ACAN\), \(COL2A1\) and \(SOX9\) there were striking differences between gene expression profiles in each supplement. \(ACAN\) expression increased over the time course in both supplements \((p < 0.001\) for time), but was significantly higher in FBS- than StemulateTM-expanded pellets at day 0 \((p < 0.001)\) and day 21 \((p = 0.013)\). \(COL2A1\) expression was significantly higher in FBS- than in StemulateTM-expanded pellets at day 0 \((p = 0.033)\) and day 21 \((p = 0.034)\). FBS-expanded pellets demonstrated a significantly higher expression of \(SOX9\) at day 21 \((p = 0.012)\) and day 28 \((p = 0.002)\) when compared with StemulateTM-expanded pellets. There was no evidence of variability among patients for \(ACAN\) \((p = 0.48)\) and \(COL2A1\) expression \((p = 0.33)\) or for a general change in \(COL2A1\) \((p = 0.20)\) and \(SOX9\) expression \((p = 0.15)\) over time (Fig. 7).

FBS improved the quality of the ECM produced in 3D pellet culture

Frozen chondrogenic pellets were sectioned (7 µm) and stained with haematoxylin and eosin (H&E) or toluidine blue to visualise general morphology and proteoglycan distribution, respectively (Fig. 8). At day 7, chondrocytes expanded in StemulateTM appeared to form less stable and more fragile pellets when compared with chondrocytes expanded in FBS. Morphological differences seemed apparent in the cells occupying the periphery of the pellets. These cells appeared to be more fibroblastic in pellets created from the StemulateTM-expanded chondrocytes as compared to those created from FBS-expanded chondrocytes (Fig. 8). In both supplement types, there was a trend for the staining intensity of the chondrogenic pellets to increase over time. Pellets from FBS-expanded chondrocytes demonstrated an increase in metachromasia. This increase was quantitated using ImageJ software (Fig. 9), to confirm that, at day 21, FBS-expanded chondrocytes had a significantly more intense staining as compared to StemulateTM-expanded chondrocytes \((p = 0.045)\).
Again, there was no evidence of variability among patients in staining intensity ($p = 0.48$).

Discussion

This study focused on two sera supplements and their effects on human chondrocyte proliferation and the chondrocytes’ subsequent recovery using standard chondrogenic differentiation protocols. To our knowledge, this is the only study providing a detailed analysis of ECM production from 5 individuals. However, it was not possible to compare AS among donors because the existing ethically approved protocol does not allow taking a sufficient volume of blood to provide sera for monolayer in vitro expansion to the end of passage 2, representing a limitation of the study. Another limitation was that only chondrocytes obtained from total knee replacement were evaluated. Therefore, caution must be used when interpreting these data as compared with chondrocytes sourced from patients undergoing ACI, as the patient populations for these treatments differ (for example, patients undergoing ACI tend to be younger than those undergoing joint replacement surgery). Despite these limitations, four key points were demonstrated. First, Stemulate™ increased chondrocyte proliferation when compared to FBS. This result was not surprising since several studies report that HPL increases cell proliferation in many cell types (Crespo-Diaz et al., 2011; Hemeda et al., 2014; Hildner et al., 2015; Luttenberger et al., 2000; Mojica-Henshaw et al., 2013). Second, monolayer expansion of human chondrocytes in Stemulate™ negatively influenced the stability of the 3D pellets as compared to expansion in FBS: these chondrogenic pellets disintegrated easily when sectioned, slightly losing the pellet form – especially in the cells occupying the periphery, which appeared to be more fibroblastic. Third, total sGAG synthesis by Stemulate™-expanded chondrocytes lagged behind the FBS-expanded ones. Fourth, expansion in Stemulate™ negatively influenced chondrogenic gene expression in 3D pellets as compared to FBS.

There is clear evidence to confirm that 5-10 \% (v/v) HPL is more effective in supporting monolayer expansion of human MSCs than both FBS and AS at the same concentration range (Bieback et al., 2009; Juhl et al., 2016; Trojahn Kolle et al., 2013). Further, both Bieback et al. (2009) and Juhl et al. (2016) report that HPL supported long term monolayer expansion whilst still maintaining the MSCs phenotype and their differentiation potential. Given these positive data, herein it was established that Stemulate™ was better than FBS at increasing chondrocyte proliferation in monolayer culture. No published studies have used Stemulate™ for chondrocyte expansion, but increased proliferation is shown when using derivatives of HPL. Sprefacio et al. (2009) compare the effects of platelet rich plasma (PRP), platelet poor plasma (PPP) and FBS on human chondrocytes over a 20 d cell proliferation time course, with PRP resulting the most stimulatory in terms of chondrocyte proliferation. Hildner et al. (2015) report that 5 % -10 % HPL significantly increase human chondrocyte proliferation as compared to FBS.
these studies and the current, it is evident that HPL increases the proliferation of human chondrocytes in monolayer culture.

In the current study, no morphological differences were observed in human chondrocytes that were monolayer-expanded in Stemulate™ or FBS. No other published study has investigated morphological differences between human chondrocytes expanded in HPL or FBS. However, Trojahn-Kolle et al. (2013) report morphological differences in monolayer-expanded MSCs, appearing smaller and less spindle-like when cultured in HPL as compared with FBS. In the current study, 3D pellets from human chondrocytes expanded in monolayer in Stemulate™ created more fragile, less compact pellets as compared to those expanded in FBS, as seen by qualitative histological assessment. These chondrogenic pellets disintegrated easily, losing their pellet form, when prepared for histological analysis, resulting in a more difficult sectioning of the Stemulate™-expanded pellets at day 7. This was not assessed quantitatively but was a consistent observation throughout the study.

Very few studies use HPL with human chondrocytes and even fewer investigate sGAG production in 3D pellets. Following a published 3D pellet chondrogenic differentiation protocol (Johnstone et al., 1998; Pittenger, 1999), it was demonstrated that FBS-expanded human chondrocytes generated significantly more sGAG than Stemulate™-expanded human chondrocytes across a 4-week time course. These results were opposite to the findings of Hildner et al. (2015), who report that HPL-expanded chondrocytes produce more sGAG than FBS-expanded chondrocytes in micromass pellets created from the same chondrogenic differentiation
protocol used in this study, over a 5-week period. After a 5-week culture period, a more intense sGAG staining is observed in HPL-expanded human chondrogenic pellets, compared to FBS pellets (Hildner et al., 2015). These differences could be due to the supplement types, since Stemulate™ was used in the current study, whereas Hildner et al. (2015) use a HPL generated in their own laboratory from PRP obtained from 36 expired thrombocyte concentrates produced at a transfusion blood centre. 5 batches of HPL are characterised by Quantikine ELISA for these experiments, but no further details on the characterisation are given (Hildner et al., 2015). Furthermore, in the current study, the 3D pellets were cultured in chondrogenic medium without HPL, whereas Hildner et al. (2015) add HPL into 3D pellet cultures.

In contrast to sGAG, total collagen production levels were found to be quite low throughout the 3D pellet culture 4-week time course. Despite this, collagen production by Stemulate™-expanded human chondrocytes appeared to lag behind FBS-expanded human chondrocytes. Gaissmaier et al. (2005) also observe that HPL-expanded chondrocytes seeded into 3D alginate beads produce low levels of collagen over a shorter time course of 14 d.

In the 3D pellet cultures, genes that determine chondrocyte differentiation state were investigated. De-differentiation was investigated through the relative expression of COL1A1 (Benya et al., 1978; Brew et al., 2010) and hypertrophy through the relative expression of COL10A1 (Caron et al., 2012; Dell’Accio et al., 2001) and ALK1 (Blaney Davidson et al., 2009; Dell’Accio et al., 2001). ALK1 is up-regulated during monolayer expansion, due to a loss of in vivo cartilage formation potential, and is associated with irreversible chondrocyte de-differentiation (Blaney Davidson et al., 2007; Blaney Davidson et al., 2009; Dell’Accio et al., 2001). None of these genes were detected in 3D pellets derived from either Stemulate™- or FBS-expanded human chondrocytes, suggesting that the human chondrocytes had not undergone de-differentiation or hypertrophy. In addition, chondrogenic capacity was assessed through the relative expression of COL2A1, ACAN and SOX9. COL2A1 and ACAN are necessary for ECM formation and the transcription factor SOX9 regulates chondrocyte proliferation, chondrogenesis and transition to a non-hypertrophic state. Expression of COL2A1 and ACAN declines following prolonged monolayer culture, particularly after passage 4 (Schulze-Tanzil et al., 2002). For both these ECM markers, an increase was found across the 4-week time course. However, a much larger increase in relative gene expression was expected, especially by day 28, as this is found in similar published studies (Hildner et al., 2015). An explanation could be that nutrient saturation was approached.

Fig. 8. Representative histological images from the centre of the FBS- and Stemulate™-expanded chondrogenic pellets across the 28 d time course. (a-f) Pellets stained with haematoxylin and eosin (H&E) to assess overall morphology. (g-l) Pellets stained with toluidine blue to assess proteoglycan content. Insert images are higher-powered images of the regions marked with a solid line. Scale bars: 100 µm.
before day 28. Overall, SOX9 gene expression was more striking in FBS 3D pellets when compared to Stemulate™, indicating that the FBS-expanded human chondrocytes recovered chondrogenic potential more quickly. Taken together, these findings suggest that Stemulate™ caused a delay in the recovery of chondrogenic phenotype following monolayer expansion. It would have been interesting to perform q-PCR on the monolayer chondrocytes prior to seeding into pellets and to compare the relative gene expression of the chondrocytes before and during pellet culture. This would have determined how the relative gene expression levels would have changed following chondrogenic differentiation. However, the chondrocytes used were primary isolated chondrocytes and monolayer-expanded up to passage 2, which limited cell number and prohibited the use of q-PCR analysis on the monolayer chondrocytes.

The multilevel modelling analyses performed allowed the comparison of the treatments over the time course and the exploration of the impact of patient variability (Hox, 2010; Vaughan, 2008). One of the limitations of the study was that cartilage was obtained from joints that were potentially osteoarthritic. OA is classified as a whole-joint disease and, although the cartilage was taken from macroscopically normal areas, chondrocytes could still have had a sub-chondrogenic phenotype upon differentiation. A previous study shows that osteoarthritic chondrocytes express higher levels of ALK1 (Blaney Davidson et al., 2009), but ALK1 expression was not detected in the monolayer-expanded chondrocytes. Patient variability was expected, but no statistical evidence was found for a patient-specific influence on any of the measured outcomes. Clearly more work needs to be done, but the current work demonstrated that although Stemulate™ led to rapid proliferation, it affected the re-differentiation potential of human chondrocytes. These findings demonstrated that Stemulate™ induced a sub-chondrogenic phenotype upon differentiation or enhanced monolayer-induced chondrocyte de-differentiation and reduced chondrogenic capacity. Therefore, it should be used with caution when expanding chondrocytes for clinical use.

Acknowledgments

We are grateful for the financial support kindly provided by the Orthopaedic Institute Ltd., The Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, UK. We would like to thank Cook Regentec for supplying the Stemulate™, Dr Sharon Owen and Mrs Annie Kerr for obtaining patient consent and Dr Helen McCarthy for technical guidance.

This project was funded by the Institute of Orthopaedics Ltd., Oswestry, Shropshire, UK.

There are no competing interests for any of the named authors.

References

Kim YJ, Sahab RLY, Doongab JYH, Grodzinskyab AJ (1988) Fluorometric assay of DNA in cartilage

Web Reference

Editor’s note: Replies to questions raised by reviewers were incorporated into the text of the paper, so there is no Discussion with Reviewers section.

The Scientific Editor responsible for this paper was Martin Stoddart.