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Abstract

Meniscus lesions are unsolved problems that impede the functions of stability, load bearing, and shock absorption in the knee joint and
for which there is no satisfying therapeutic option to date. Gene therapy using clinically adapted recombinant adeno-associated virus
(rAAV) vectors is a powerful tool to enhance meniscus repair, especially when applied in combination with tissue engineering strategies
that may allow to counteract a possible neutralization and/or dissemination of the rAAV particles in the recipient. Here, we examined
the ability of an alginate (AlgPH155) hydrogel to formulate and deliver rAAV vectors carrying the genes for the reparative fibroblast
growth factor (FGF-2) and transforming growth factor beta (TGF-β) as a means to trigger the biological activities in human meniscal
fibrochondrocytes. The results show that effective rAAV-mediated FGF-2 and TGF-β overexpression via alginate (AlgPH155) hydrogel-
guided vector administration equally led to enhanced levels of cell proliferation and of specific matrix deposition (proteoglycans, type-
I/-III collagen) in the cells over an extended period of time (21 days, the latest time point evaluated) relative to the control treatments
(hydrogel without vector or with a vector carrying the reporter lacZ gene). These effects were associated with an increase in the expression
of the contractile alpha smooth muscle actin (α-SMA) marker, a determinant of the meniscus response injury, and with decreased levels
of pro-inflammatory markers (interleukin 1 beta—IL1β, tumor necrosis factor alpha—TNF-α). These findings show the potential of
alginate hydrogel-guided rAAV-mediated gene therapy as a new, off-the-shelf therapeutic system for meniscus repair.
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Introduction

Meniscal tears are common, unsolved problems in
sports medicine (Englund and Lohmander, 2005; Langhans
et al., 2023; Makris et al., 2011), impairing the critical func-
tions of this highly specialized fibrocartilaginous structure
in knee joint stability, load bearing, and shock absorption
(Langhans et al., 2023; Makris et al., 2011). Although
tears occurring in the peripheral (vascularized) region of the
meniscus may be sutured, those located in the central (avas-
cular) portion do not properly heal, potentially leading to
knee osteoarthritis (Englund and Lohmander, 2005; Lang-
hans et al., 2023; Roos et al., 1998; Salata et al., 2010), and
their reconstruction is unsatisfyingwhile the long-term ben-
efits of allografts are not conclusive (Ahmed et al., 2022;

Kunze et al., 2023; Langhans et al., 2023; Makris et al.,
2011; Ozeki et al., 2021; Wang et al., 2021; Wirth et al.,
2002), showing the pressing need for new therapeutic op-
tions. Themeniscus is composed of residentmeniscal fibro-
chondrocytes that produce an extracellular matrix (ECM)
predominantly containing type-I collagen, with also smaller
amounts of proteoglycans (Arnoczky, 1999; Makris et al.,
2011; McDevitt and Webber, 1990). Such features are sub-
stantially altered in meniscal tears and disease, with im-
paired levels of cellularity and of ECM compounds (Her-
wig et al., 1984; Hough and Webber, 1990; Meister et al.,
2004; Mesiha et al., 2007).

Gene therapy offers strong tools to manage such
pathological changes in torn menisci via the application
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of gene sequences coding for reparative factors that may
durably enhance meniscal cell proliferation and ECMdepo-
sition relative to short-lived recombinant molecules (Evans
et al., 2005; Evans and Huard, 2015; Evans and Robbins,
1999; Huard et al., 2003; Lamsam et al., 1998; Madry et al.,
2011; Martinek et al., 2000; Shen et al., 2005). Recombi-
nant adeno-associated virus (rAAV) vectors are particularly
well adapted to achieve these goals as these constructs are
derived from a replication-defective, non-pathogenic hu-
man parvovirus (Atchison et al., 1965) capable of stably
targeting primary meniscal fibrochondrocytes at very high
efficiencies (up to 100 % for at least 4 weeks in vitro) (Ar-
rigoni et al., 2021; Cucchiarini et al., 2009; Madry et al.,
2004) even when the cells are embedded in their ECM (up
to 75 % for 2 weeks in situ) (Cucchiarini et al., 2009). Such
effects are probably due to the small size (20 nm) (Atchi-
son et al., 1965) and long maintenance of rAAVs as stable
episomal forms in their targets (months to years) (Xiao et
al., 1996) that may avoid the risk of insertional mutagen-
esis inherent to integrative retro-/lentivial vectors (Goto et
al., 2000) and in contrast to nonviral and adenoviral vec-
tors with short-term functionality (Evans et al., 2005; Evans
and Huard, 2015; Evans and Robbins, 1999; Huard et al.,
2003; Lamsam et al., 1998; Lee et al., 2014; Madry et
al., 2011; Martinek et al., 2000; Shen et al., 2005; Stein-
ert et al., 2007), making currently rAAV the most suited
gene transfer vehicles for clinical applications (Cucchiarini,
2016; Evans et al., 2009; Evans et al., 2013; Evans et al.,
2018; Evans et al., 2006; Mease et al., 2010; Vrouwe et
al., 2022). Nevertheless, a number of obstacles still im-
pede the optimal use of rAAV in vivo, in particular the
presence of neutralizing antibodies against the AAV cap-
sid proteins in the human population (Abdul et al., 2023;
Cottard et al., 2004; Mingozzi et al., 2013) and the pos-
sible dissemination of the vectors to unwanted, nontarget
sites (Cucchiarini, 2016). A potent approach to circum-
vent these hurdles is to take advantage of tissue engineering
procedures as a means to deliver rAAV via biocompatible
materials adapted for meniscus repair (Bilgen et al., 2018;
Cucchiarini, 2016; Cucchiarini et al., 2016; Grogan et al.,
2020; Huard et al., 2003; Kluyskens et al., 2022; Kwon et
al., 2019; Makris et al., 2011; Rey-Rico et al., 2017), based
on the pioneering work from Brunger and colleagues who
used a scaffold-mediated lentiviral transduction of TGF-β
for functional cartilage tissue engineering (Brunger et al.,
2014). Hydrogels provide optimal systems to achieve this
goal due to their high water contents that make them consis-
tent with the microenvironment of the meniscus and to their
ability to deliver drugs and gene vectors in target tissues in
a spatiotemporal manner (De Laporte and Shea, 2007; Jo
and Tabata, 2015; Lombardo et al., 2021; Rey-Rico et al.,
2017; Seidlits et al., 2013).

The aim of this study was to explore the value of us-
ing an alginate hydrogel formulating rAAV vectors (Diaz-
Rodriguez et al., 2015) as a new, improved gene therapy

platform for meniscus repair. Among the various factors
reported for their therapeutic benefits in this tissue (connec-
tive tissue growth factor—CTGF; insulin-like growth factor
I—IGF-I; hepatocyte growth factor—HGF) (Hidaka et al.,
2002; Romanazzo et al., 2018; Zhang et al., 2015; Zhang et
al., 2009a; Zhang et al., 2009b), we examined the ability of
the fibroblast growth factor (FGF-2) (Lee et al., 2014) and
of the transforming growth factor beta (TGF-β) (Goto et
al., 2000; Steinert et al., 2007) to trigger the reparative ac-
tivities of human meniscal fibrochondrocytes upon rAAV-
mediated gene transfer guided via alginate (AlgPH155) hy-
drogel administration based on our previous findings show-
ing the potential of these two gene vectors when applied di-
rectly to these cells (Cucchiarini et al., 2009; Cucchiarini et
al., 2015).

Materials and Methods
Study Design

Human meniscal fibrochondrocytes were prepared
from human adult menisci of knee joints from patients un-
dergoing total knee arthroplasty, placed in monolayer cul-
ture, and directly incubated with rAAV (candidate FGF-2
or TGF-β versus control lacZ or no vector)/alginate hydro-
gels for up to 21 days prior to performing the evaluations
that included biochemical, immunohistological, and real-
time RT-PCR analyses (Fig. 1).

Reagents
Reagents were from Sigma (Munich, Germany) oth-

erwise indicated. Collagenase type-I (C1-22; 232 U/mg)
was from Biochrom (Berlin, Germany). Sodium alginate
(GRINDSTED AlgPH155, molecular weight = 140 kDa,
mannuronic to glucuronic (M:G) ratio = 1:5, viscosity =
350-550 mPass) was obtained from Danisco (Copenhagen,
Denmark). The dimethylmethylene blue dye (DMMB)
was from Serva (20335.01; Darmstadt, Germany). The
AAVanced Concentration Reagent was from System Bio-
science (Heidelberg, Germany). The anti-FGF-2 (C-18),
anti-TGF-β (V), anti-type-I collagen (COL-1), and anti-
type-III collagen (C15) antibodies were purchased at Santa
Cruz Biotechnology (Heidelberg, Germany), the anti-type-
II collagen (II-II6B3) antibody at DSHB Iowa (Iowa City,
IA, USA), and the anti-type-X collagen (C7974) and anti-
α-SMA (1A4) antibodies at Sigma. Biotinylated sec-
ondary antibodies and the ABC reagent with diaminoben-
zidine (DAB, D5637) were obtained at Vector Labora-
tories (Alexis Deutschland GmbH, Grünberg, Germany).
The FGF-2 ELISA (human FGF basic Quantikine ELISA,
DFB50), the TGF-β ELISA (human TGF-β Quantikine
ELISA, DB100B), the IL-1β ELISA (human IL-1β Quan-
tikine ELISA, DLB50), and the TNF-α ELISA (human
TNF-αQuantikine ELISA, DTA00D)were fromR&DSys-
tems (Wiesbaden-Nordenstadt, Germany). The Cell Pro-
liferation Reagent WST-1 was purchased at Roche Ap-
plied Science (Mannheim, Germany). The type-I collagen
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Fig. 1. Study design. Human meniscal fibrochondrocytes were prepared from human adult menisci of knee joints from patients un-
dergoing total knee arthroplasty and placed in monolayer culture as described in the Materials and Methods. The rAAV-hFGF-2 and
rAAV-hTGF-β vectors were independently incubated in alginate to form rAAV (FGF-2 or TGF-β)/alginate hydrogels (macroscopic
views) and added to the human meniscal fibrochondrocyte monolayer cultures for up to 21 days as described in the Materials and Meth-
ods. The obtained cultures were processed to perform biochemical, immunohistological, and real-time RT-PCR analyses as described in
the Materials and Methods (created with BioRender.com).

ELISA (abx585048) was from Abbexa (Cambridge, UK)
and the type-III collagen ELISA (EK403315-BM) from
BioCat (Heidelberg, Germany).

Cell Culture
Human meniscal fibrochondrocytes were prepared

from normal human adult menisci of knee joints from pa-
tients undergoing total knee arthroplasty (n = 3, ages 55-
75 years) as previously described (Cucchiarini et al., 2009;
Cucchiarini et al., 2015; Rey-Rico et al., 2016) and with ap-
proval by the Ethics Committee of the Saarland Physicians
Council (Ärztekammer des Saarlandes, Ethik-Kommission,
no. 67/12). All patients provided informed consent before
inclusion in the study, with all procedures in accordance
with the Helsinki Declaration. Menisci with tears or vis-
ible degenerative changes on gross examination were ex-
cluded. Briefly, the menisci were washed, diced in 2 × 2
mm samples, and placed DMEM, 100 U/mL penicillin G,
100 µL/mL streptomycin (basal medium) with 10 % fetal
bovine serum (FBS) (growth medium) containing 0.01 %
(w/v) collagenase for 16 h at 37 °C in a humidified atmo-
sphere with 5 % CO2 (Cucchiarini et al., 2009; Cucchiarini
et al., 2015; Rey-Rico et al., 2016). Isolated cells were fil-
tered through a 100 µmmesh to remove any undigested ma-
trix, washed 2× with phosphate-buffered saline (PBS), and
placed in 75-cm2 culture flasks with growth medium at 37
°Cwith 5%CO2 withmedium change every 2-3 days (Cuc-
chiarini et al., 2009; Cucchiarini et al., 2015; Rey-Rico et
al., 2016). The cells were replated at the indicated densities
for the experiments (passage≤ 2) (Cucchiarini et al., 2009;
Cucchiarini et al., 2015; Rey-Rico et al., 2016).

Plasmids and rAAV Vectors
All constructs derive from pSSV9, an AAV-2 genomic

clone (Samulski et al., 1987; Samulski et al., 1989). rAAV-

lacZ carries the E. coli β-galactosidase (lacZ) reporter
gene, rAAV-hFGF-2 a human basic fibroblast growth fac-
tor (FGF-2) sequence (0.48-kb), and rAAV-hTGF-β a hu-
man transforming growth factor beta 1 (TGF-β) sequence
(1.2-kb), all controlled by the CMV-IE promoter/enhancer
(Cucchiarini et al., 2009; Cucchiarini et al., 2015; Diaz-
Rodriguez et al., 2015; Madry et al., 2004; Venkate-
san et al., 2022). All vectors were packaged as conven-
tional (not self-complementary) vectors with a helper-free,
two-plasmid transfection system using the 293 packaging
cell line (an adenovirus-transformed human embryonic cell
line), the pXX2 packaging plasmid, and the pXX6 Ade-
novirus helper plasmid (Cucchiarini et al., 2015; Diaz-
Rodriguez et al., 2015; Venkatesan et al., 2022). Purifi-
cation of the vectors using the AAVanced Concentration
Reagent and their titration by real-time PCR were per-
formed according to the manufacturer’s recommendations
(Cucchiarini et al., 2009; Cucchiarini et al., 2015; Diaz-
Rodriguez et al., 2015; Madry et al., 2004; Venkatesan et
al., 2022) and using routine protocols (Cucchiarini et al.,
2009; Cucchiarini et al., 2015; Diaz-Rodriguez et al., 2015;
Madry et al., 2004; Venkatesan et al., 2022), with ~ 1010
transgene copies/mL (~ 1/500 functional recombinant par-
ticles).

Incorporation of rAAV Vectors in Alginate Hydrogel

A1.5% alginate (AlgPH155) solution was prepared in
PBS (Diaz-Rodriguez et al., 2015; Rey-Rico et al., 2016),
mixed 1:1 (v/v) with the different rAAVpreparations (80 µL
alginate/80 µL vector in 10 % sucrose, i.e., 1.6× 106 trans-
gene copies) or with 10 % sucrose (80 µL alginate/80 µL
10 % sucrose, i.e., alginate hydrogel without vector), and
dropped at room temperature in calcium chloride (102 mM)
using a syringewith a needle of 27G in 24-well plates for al-
ginate crosslinking with calcium (3-8 sec) (Diaz-Rodriguez
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et al., 2015; Rey-Rico et al., 2016). Studies showing the
effective and durable (21 days) rAAV vector controlled re-
lease from the alginate (AlgPH155) hydrogels have been al-
ready previously performed and reported (Diaz-Rodriguez
et al., 2015).

Gene Transfer via the rAAV/alginate Hydrogels
Monolayer cultures of human meniscal fibrochon-

drocytes (104 cells/well in 48-well plates) were kept in
growth medium for 24 h at 37 °C with 5 % CO2 and the
rAAV/alginate hydrogels were directly added to the cultures
(multiplicity of infection, i.e., MOI = 160) that were kept in
growth medium for up to 21 days with medium change ev-
ery 3-4 days (Cucchiarini et al., 2009; Cucchiarini et al.,
2015; Diaz-Rodriguez et al., 2015). Controls included hy-
drogels without rAAV vectors. Direct application of the
vectors in their free form was not performed here as it was
already reported in previous work (Cucchiarini et al., 2009;
Cucchiarini et al., 2015).

Detection of Transgene Expression
Transgene (FGF-2, TGF-β) expression was moni-

tored by specific, respective ELISAs as previously de-
scribed (Cucchiarini et al., 2009; Cucchiarini et al., 2015).
Briefly, monolayer cultures of human meniscal fibrochon-
drocytes were washed 2× and kept for 24 h in basal medium
prior to collecting culture medium supernatants at the de-
noted time points that were centrifuged to remove debris.
Measurements were performed using aGENios spectropho-
tomer/fluorometer (Tecan, Crailsheim, Germany) (Cuc-
chiarini et al., 2009; Cucchiarini et al., 2015).

Expression of FGF-2 and TGF-β was also examined
by immunocytochemistry on fixed cultures (4 % formalin)
using specific, respective primary antibodies (anti-FGF-2
and anti-TGF-β: 1:50), biotinylated secondary antibodies
(1:200), and the ABC method with DAB as the chromogen
(Cucchiarini et al., 2009; Cucchiarini et al., 2015). Cultures
were also processed with omission of the primary antibod-
ies to control for secondary immunoglobulins (Cucchiarini
et al., 2009; Cucchiarini et al., 2015). Cultures were then
examined under light microscopy (Olympus BX 45; Ham-
burg, Germany) (Cucchiarini et al., 2009; Cucchiarini et al.,
2015).

Immunocytochemical Analyses
Expression of type-I, -III, -II, and -X collagen and of

α-SMA was examined by immunocytochemistry on fixed
cultures (4 % formalin) using specific, respective primary
antibodies (anti-type-II collagen: undiluted; anti-type-III
collagen: 1:50; anti-type-I and -X collagen: 1:200; anti-
α-SMA: 1:400), biotinylated secondary antibodies (1:200),
and the ABC method with DAB as the chromogen (Cuc-
chiarini et al., 2009; Cucchiarini et al., 2015; Diaz-
Rodriguez et al., 2015; Rey-Rico et al., 2016; Venkate-
san et al., 2022). Cultures were also processed with omis-

sion of the primary antibodies to control for secondary im-
munoglobulins (Cucchiarini et al., 2009; Cucchiarini et al.,
2015; Diaz-Rodriguez et al., 2015; Rey-Rico et al., 2016;
Venkatesan et al., 2022). Cultures were then examined un-
der light microscopy (Olympus BX 45) (Cucchiarini et al.,
2009; Cucchiarini et al., 2015; Diaz-Rodriguez et al., 2015;
Rey-Rico et al., 2016; Venkatesan et al., 2022).

Histomorphometry
The percentage of FGF-2-, TGF-β-, type-I collagen-

, type-III collagen-, type-II collagen-, type-X collagen-,
and α-SMA-positive (FGF-2+, TGF-β+, type-I collagen+,
type-III collagen+, type-II collagen+, type-X collagen+,
and α-SMA+, respectively) cells (cells positively stained
by immunocytochemical analyses for FGF-2, TGF-β, type-
I collagen, type-III collagen, type-II collagen, type-X colla-
gen, and α-SMA, respectively, to the total number of cells)
(Cucchiarini et al., 2009; Cucchiarini et al., 2015; Venkate-
san et al., 2022) were measured at three standardized and
randomized sites in the cultures using the CellSens program
1.12 (Olympus) and Adobe PhotoshopAdobe Systems soft-
ware CS6 (Adobe Systems, Unterschleissheim, Germany)
(Venkatesan et al., 2022).

Biochemical Analyses
The levels of IL-1β and TNF-α production were mea-

sured in the supernatants of the cultures by respective
ELISAs as previously described (Cordaro et al., 2020). The
indices of cell proliferation were directly estimated in the
cultures using the Cell Proliferation Reagent WST-1, with
optical densities (OD450 nm) proportional to the cell num-
bers as previously described (Diaz-Rodriguez et al., 2015;
Steinert et al., 2009; Venkatesan et al., 2022). The cells
were then harvested, digested overnight in 200 µL of 125
µg/mL papain (Sigma), and collected to assess the DNA
contents by Hoechst 33258 assay (20 µL), the proteogly-
can contents by binding to DMMB dye (20 µL), and the
type-I and -III collagen contents by respective ELISA (100
µL of a 1:5 dilution) as previously described (Cucchiarini et
al., 2009; Cucchiarini et al., 2015; Venkatesan et al., 2022).
Measurements were performed using aGENios spectropho-
tomer/fluorometer (Cucchiarini et al., 2009; Cucchiarini et
al., 2015; Diaz-Rodriguez et al., 2015; Venkatesan et al.,
2022).

Total RNA Extraction and Real-time RT-PCR Analyses
Total cellular RNA was prepared using the RNeasy

Protect Mini Kit with on-column RNase-free DNase treat-
ment (Qiagen, Hilden, Germany) (Venkatesan et al., 2022)
and RNA was eluted in 40 µL RNase-free water for reverse
transcription with 8.2 µL of eluate and the 1st Strand
cDNA Synthesis kit for RT-PCR (AMV) (Roche Applied
Science) (Venkatesan et al., 2022). RT-PCR amplification
was executed with 2 µL of cDNA product using Brilliant
SYBR Green QPCR Master Mix (Stratagene, Agilent
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Technologies, Waldbronn, Germany) on an Mx3000P
QPCR system (Stratagene) (Venkatesan et al., 2022) with
the following conditions: (10 min at 95 °C), cycles of am-
plification (30 sec denaturation at 95 °C, 1 min annealing
at 60 °C, 30 sec extension at 72 °C), denaturation (1 min at
95 °C), and final incubation (30 sec at 55 °C) (Venkatesan
et al., 2022). The primers (Applied Biosystems, Inchinnan,
UK) used were: type-I collagen (COL1A1; meniscus
marker; forward 5′-ACGTCCTGGTGAAGTTGGTC-
3′; reverse 5′-ACCAGGGAAGCCTCTCTCTC-3′),
type-III collagen (COL3A1; meniscus marker; for-
ward 5′-CACAAGGAGTCTGCATGTCT-3′; re-
verse 5′-GTTCACCAGGCTCACCAGCA-3′), alpha
smooth muscle actin (α-SMA; contractile marker;
forward 5′-GAACATGTAGTCCTTCCTGGAG-3′;
reverse 5′-TAACTGTAGTCCTTCCTGGAG-3′),
type-II collagen (COL2A1; chondrogenic marker;
forward 5′-GGACTTTTCTCCCCTCTCT-3′; reverse
5′-GACCCGAAGGTCTTACAGGA-3′), type-X col-
lagen (COL10A1; marker of hypertrophy; forward
5′-CCCTCTTGTTAGTGCCAACC-3′; reverse 5′-
AGATTCCAGTCCTTGGGTCA-3′), interleukin 1
beta (IL-1β; pro-inflammatory marker; forward
5′- CCGTGCCTACGAACATGTC-3′; reverse 5′-
CACACAGAAGCTCATCGGAG-3′), tumor necro-
sis factor alpha (TNF-α; pro-inflammatory marker;
forward 5′-AGAACCCCCTGGAGATAACC-3′; re-
verse 5′-AAGTGCAGCAGGCAGAAGAG-3′), and
glyceraldehyde-3-phosphate dehydrogenase (GAPDH;
housekeeping gene and internal control; forward,
5′-GAAGGTGAAGGTCGGAGTC-3′; reverse, 5′-
GAAGATGGTGATGGGATTTC-3′) (all 150 nM final
concentration) (Venkatesan et al., 2022). Controls included
reactions using water and non-reverse-transcribed mRNA
while product specificity was verified by melting curve
analysis and agarose gel electrophoresis. The threshold
cycle (Ct) value for each sequence was acquired for each
amplification with the MxPro QPCR software (Stratagene)
and values were normalized to GAPDH expression using
the 2−∆∆Ct method (Venkatesan et al., 2022).

Statistical Analysis

Data are expressed as mean ± standard deviation of
separate experiments. Each condition was performed in du-
plicate in three independent experiments with all patientsʹ
samples. Data were obtained by two individuals blinded
with respect to the treatment groups. The t-test was em-
ployed with p ≤ 0.05 considered statistically significant.

Results
Effective rAAV-mediated FGF-2 and TGF-β
Overexpression in Human Meniscal Fibrochondrocytes
upon Alginate Hydrogel-guided Vector Delivery

The candidate rAAV-hFGF-2/alginate (FGF-
2/AlgPH155) and rAAV-hTGF-β/alginate (TGF-

β/AlgPH155) hydrogels were first tested for their
respective ability to promote FGF-2 and TGF-β overex-
pression in human meniscal fibrochondrocytes relative to
the control conditions that included the reporter rAAV-
lacZ/alginate (lacZ/AlgPH155) hydrogel and hydrogels
without rAAV vectors (-/AlgPH155).

Effective overexpression of FGF-2 via rAAV de-
livered using an alginate hydrogel (FGF-2/AlgPH155)
was significantly achieved in human meniscal fibrochon-
drocytes relative to the control conditions (-/AlgPH155,
lacZ/AlgPH155) as noted by immunocytochemical de-
tection of FGF-2 (~ 85 % of FGF-2+ cells with FGF-
2/AlgPH155 versus < 10 % in the controls on day 21, i.e.,
an ~ 8.5-fold difference, always p ≤ 0.001) and by spe-
cific (FGF-2) ELISA (up to 8.9-fold increase with FGF-
2/AlgPH155 versus the controls on day 21, always p ≤
0.001) (Fig. 2A), probably due to the ability of AlgPH155
to support an effective, controlled release of these vectors
(Diaz-Rodriguez et al., 2015). Similarly, effective over-
expression of TGF-β via rAAV delivered using an alginate
hydrogel (TGF-β/AlgPH155) was significantly achieved in
human meniscal fibrochondrocytes relative to the control
conditions (-/AlgPH155, lacZ/AlgPH155) as seen by im-
munocytochemical detection of TGF-β (~ 78 % of TGF-
β+ cells with TGF-β/AlgPH155 versus< 10 % in the con-
trols on day 21, i.e., an ~ 7.8-fold difference, always p ≤
0.001) and by specific (TGF-β) ELISA (up to 1.3-fold in-
crease with TGF-β/AlgPH155 versus the controls on day
21, always p ≤ 0.001) (Fig. 2B), again probably due to
the ability of AlgPH155 to support an effective, controlled
release of these vectors (Diaz-Rodriguez et al., 2015). No
significant differences were noted between the two control -
/AlgPH155 and lacZ/AlgPH155 conditions for any of these
parameters (always p ≥ 0.050) (Fig. 2).

Effects of rAAV-mediated FGF-2 and TGF-β
Overexpression on The Biological Activities of Human
Meniscal Fibrochondrocytes upon Alginate
Hydrogel-guided Vector Delivery

The candidate FGF-2/AlgPH155 and TGF-
β/AlgPH155 hydrogels were next tested for their
respective ability to stimulate the biological activities
(cell proliferation, matrix deposition, inflammation) in
human meniscal fibrochondrocytes relative to the control
conditions including the reporter lacZ/AlgPH155 hydrogel
and hydrogels without rAAV vectors (-/AlgPH155).

Application of the FGF-2/AlgPH155 and TGF-
β/AlgPH155 hydrogels significantly enhanced the indices
of cell proliferation in human meniscal fibrochondrocytes
compared with the control conditions as noted using the
Cell Proliferation Reagent WST-1 (up to 1.2-fold differ-
ence with FGF-2/AlgPH155 and TGF-β/AlgPH155, re-
spectively, versus -/AlgPH155 and lacZ/AlgPH155 on day
21, p ≤ 0.006) (Table 1). Overall, these findings were
corroborated by the results of an estimation of the DNA
contents using the Hoechst 33258 assay in cells treated
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Fig. 2. Detection of transgene (FGF-2, TGF-β) expression in human meniscal fibrochondrocytes treated with the rAAV/alginate
hydrogels. Cells in monolayer cultures (104 cells/well in 48-well plates) were directly incubated with the independently generated rAAV
(FGF-2 or TGF-β)/alginate hydrogels (80 µL alginate/80 µL rAAV, i.e., 1.6× 106 transgene copies andMOI = 160) and kept in culture as
described in theMaterials andMethods to monitor FGF-2 (A) and TGF-β (B) expression on day 21 by immunocytochemistry and specific
ELISA as described in the Materials and Methods. Statistically significant relative to a-/AlgPH155 and blacZ/AlgPH155. Abbreviations:
-/AlgPH155, hydrogel without rAAV vector; lacZ/AlgPH155, rAAV-lacZ/alginate hydrogel; FGF-2/AlgPH155, rAAV-hFGF-2/alginate
hydrogel; TGF-β/AlgPH155, rAAV-hTGF-β/alginate hydrogel.

with the FGF-2/AlgPH155 and TGF-β/AlgPH155 hydro-
gels (up to 1.1-fold difference with FGF-2/AlgPH155 and
TGF-β/AlgPH155, respectively, versus -/AlgPH155 and
lacZ/AlgPH155 on day 21, p ≤ 0.033) (Table 1). No
significant differences were noted between the two con-
trol -/AlgPH155 and lacZ/AlgPH155 conditions or between
the two candidate FGF-2/AlgPH155 and TGF-β/AlgPH155
conditions for any of these parameters (always p ≥ 0.050)
(Table 1).

Application of the FGF-2/AlgPH155 and TGF-
β/AlgPH155 hydrogels further led to significantly en-
hanced levels of matrix deposition in human meniscal fi-
brochondrocytes compared with the control conditions, in-
cluding the proteoglycan contents using binding to DMMB
(up to 1.9- and 2.2-fold difference with FGF-2/AlgPH155
and TGF-β/AlgPH155, respectively, versus -/AlgPH155
and lacZ/AlgPH155 on day 21, p ≤ 0.049), the pro-
teoglycan contents normalized to the DNA contents (up
to 1.8- and 2-fold difference with FGF-2/AlgPH155 and
TGF-β/AlgPH155, respectively, versus -/AlgPH155 and
lacZ/AlgPH155 on day 21, p ≤ 0.036), the type-I col-
lagen contents by specific ELISA (up to 1.3-fold differ-
ence with FGF-2/AlgPH155 and TGF-β/AlgPH155, re-
spectively, versus -/AlgPH155 and lacZ/AlgPH155 on day
21, p ≤ 0.048), and the type-III collagen contents by spe-
cific ELISA (up to 1.9- and 1.6-fold difference with FGF-
2/AlgPH155 and TGF-β/AlgPH155, respectively, versus

-/AlgPH155 and lacZ/AlgPH155 on day 21, p ≤ 0.045)
(Table 1). Overall, these findings were corroborated by
the results of an immunocytochemical analysis reveal-
ing significantly higher type-I and -III collagen deposi-
tion with FGF-2/AlgPH155 and TGF-β/AlgPH155 com-
pared with the control conditions (~ 71 % and ~ 68 % of
type-I collagen+ cells with FGF-2/AlgPH155 and TGF-
β/AlgPH155, respectively, versus < 6 % in -/AlgPH155
and lacZ/AlgPH155 on day 21, i.e., an ~ 11.8- and ~ 11.3-
fold difference, respectively, always p≤ 0.001; ~ 76 % and
~ 66 % of type-III collagen+ cells with FGF-2/AlgPH155
and TGF-β/AlgPH155, respectively, versus < 7 % in -
/AlgPH155 and lacZ/AlgPH155 on day 21, i.e., an ~ 10.9-
and ~ 9.4-fold difference, respectively, always p ≤ 0.001)
(Fig. 3). No significant differences were noted between
the two control -/AlgPH155 and lacZ/AlgPH155 conditions
or between the two candidate FGF-2/AlgPH155 and TGF-
β/AlgPH155 conditions for any of these parameters (always
p ≥ 0.050) (Table 1 and Fig. 3).

These observations were further supported by the
results of a real-time RT-PCR analysis showing sig-
nificantly increased COL1A1 and COL3A1 expression
compared with the control conditions (COL1A1: up to
9.4- and 7.1-fold difference with FGF-2/AlgPH155 and
TGF-β/AlgPH155, respectively, versus -/AlgPH155 and
lacZ/AlgPH155 on day 21, always p ≤ 0.001; COL3A1:
up to 3.2- and 2.2-fold difference with FGF-2/AlgPH155
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Table 1. Biological activities in human meniscal fibrochondrocytes treated with the rAAV/alginate hydrogels (day 21).
Assay -/AlgPH155 lacZ/AlgPH155 FGF-2/AlgPH155 TGF-β/AlgPH155

WST-1 (OD450 nm/104 cells) 1.17 ± 0.01 1.27 ± 0.03 1.43 ± 0.09a,b 1.39 ± 0.05a,b

DNA (ng/104 cells) 18.89 ± 0.03 19.51 ± 0.15 20.20 ± 0.05a,b 21.25 ± 0.18a,b

Proteoglycans (µg/104 cells) 0.79 ± 0.05 0.86 ± 0.03 1.54 ± 0.12a,b 1.75 ± 0.10a,b

Proteoglycans/DNA (µg/ng) 0.042 ± 0.002 0.044 ± 0.001 0.076 ± 0.006a,b 0.082 ± 0.004a,b

Type-I collagen (pg/mL/24 h/104 cells) 466.50 ± 14.85 483.50 ± 22.63 607.75 ± 1.77a,b 604.25 ± 3.18a,b

Type-III collagen (pg/mL/24 h/104 cells) 4,650.00 ± 494.97 5,075.00 ± 459.62 8,750.00 ± 282.84 7,500.00 ± 70.71a,b

IL-1β (pg/mL/24 h/104 cells) 3.25 ± 0.03 2.92 ± 0.29 2.20 ± 0.09 2.45 ± 0.04
TNF-α (pg/mL/24 h/104 cells) 106.53 ± 0.14 97.64 ± 5.54 75.69 ± 3.86 86.72 ± 0.39

Abbreviations: -/AlgPH155, alginate hydrogel without rAAV vector; lacZ/AlgPH155, alginate hydrogel carrying the rAAV-lacZ vector;
FGF-2/AlgPH155, alginate hydrogel carrying the rAAV-hFGF-2 vector; TGF-β/AlgPH155, alginate hydrogel carrying the rAAV-hTGF-β
vector. Data are expressed as mean ± standard deviation of separate experiments. Statistically significant relative to a-/AlgPH155 and
blacZ/AlgPH155.

Fig. 3. Detection of matrix deposition and markers in human meniscal fibrochondrocytes treated with the rAAV/alginate hydro-
gels. Cells in monolayer cultures were directly incubated with the independently generated rAAV (FGF-2 or TGF-β)/alginate hydrogels
as described in Fig. 2 and kept in culture as described in the Materials and Methods to monitor the deposition of type-I, -III, -II, and -X
collagen and the expression of α-SMA on day 21 by immunocytochemistry with specific primary antibodies, biotinylated secondary anti-
bodies, and the ABCmethod with DAB as the chromogen as described in theMaterials andMethods (magnification 4×; all representative
data). Abbreviations: -/AlgPH155, hydrogel without rAAV vector; lacZ/AlgPH155, rAAV-lacZ/alginate hydrogel; FGF-2/AlgPH155,
rAAV-hFGF-2/alginate hydrogel; TGF-β/AlgPH155, rAAV-hTGF-β/alginate hydrogel.

and TGF-β/AlgPH155, respectively, versus -/AlgPH155
and lacZ/AlgPH155 on day 21, always p≤ 0.001) (Fig. 4).
No significant differences were noted between the two con-
trol -/AlgPH155 and lacZ/AlgPH155 conditions or between
the two candidate FGF-2/AlgPH155 and TGF-β/AlgPH155
conditions for any of these parameters (always p ≥ 0.050)
(Fig. 4).

These effects were associated with increased levels
of specific α-SMA expression as seen on an immunocyto-

chemical analysis (~ 85 % and ~ 80 % of α-SMA+ cells
with FGF-2/AlgPH155 and TGF-β/AlgPH155, respec-
tively, versus < 8 % in -/AlgPH155 and lacZ/AlgPH155
on day 21, i.e., an ~ 10.6- and ~ 10-fold difference, respec-
tively, always p ≤ 0.001) (Fig. 3), a result again confirmed
by a real-time RT-PCR analysis (up to 3.1- and 2.8-fold in-
crease with FGF-2/AlgPH155 and TGF-β/AlgPH155, re-
spectively, versus -/AlgPH155 on day 21, always p ≤
0.001) (Fig. 4). No significant differences were noted
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Fig. 4. Gene expression profiles in human meniscal fibrochondrocytes treated with the rAAV/alginate hydrogels. Cells in mono-
layer cultures were directly incubated with the independently generated rAAV (FGF-2 or TGF-β)/alginate hydrogels as described in Figs.
2,3 and kept in culture to monitor the following gene expression profiles by real-time RT-PCR on day 21 as described in the Materials
and Methods: COL1A1, COL3A1, α-SMA, COL2A1, COL10A1, IL-1β, and TNF-α, with GAPDH serving as a housekeeping gene
and internal control. Ct values were obtained for each target and for GAPDH (control for normalization) and fold inductions relative to
the -/AlgPH155 condition were measured using the 2−∆∆Ct method as described in the Materials and Methods. Statistically significant
relative to a-/AlgPH155 and blacZ/AlgPH155. Abbreviations: -/AlgPH155, hydrogel without rAAV vector; lacZ/AlgPH155, rAAV-
lacZ/alginate hydrogel; FGF-2/AlgPH155, rAAV-hFGF-2/alginate hydrogel; TGF-β/AlgPH155, rAAV-hTGF-β/alginate hydrogel.

between the two control -/AlgPH155 and lacZ/AlgPH155
conditions or between the two candidate FGF-2/AlgPH155
and TGF-β/AlgPH155 conditions for any of these parame-
ters (always p ≥ 0.050) (Figs. 3,4).

In contrast, there was no significant difference in the
modest levels of type-II and -X collagen deposition be-
tween the FGF-2/AlgPH155 and TGF-β/AlgPH155 ver-
sus the control conditions as noted by the results of an
immunocytochemical analysis (~ 8 % and ~ 9 % of
type-II collagen+ cells with FGF-2/AlgPH155 and TGF-
β/AlgPH155, respectively, versus < 7 % in -/AlgPH155
and lacZ/AlgPH155 on day 21, p≥ 0.138; ~ 9% and ~ 10%
of type-X collagen+ cells with FGF-2/AlgPH155 and TGF-
β/AlgPH155, respectively, versus < 9 % in -/AlgPH155
and lacZ/AlgPH155 on day 21, p ≥ 0.126) (Fig. 3), as also
observed via real-time RT-PCR analysis (always p ≥ 0.05
for COL2A1 and COL10A1 expression when comparing
FGF-2/AlgPH155 and TGF-β/AlgPH155 with -/AlgPH155
and lacZ/AlgPH155 on day 21) (Fig. 4). No significant dif-
ferences were noted between the two control -/AlgPH155
and lacZ/AlgPH155 conditions or between the two candi-
date FGF-2/AlgPH155 and TGF-β/AlgPH155 conditions
for any of these parameters (always p ≥ 0.050) (Figs. 3,4).

Interestingly, application of the FGF-2/AlgPH155 and
TGF-β/AlgPH155 hydrogels decreased the expression of
inflammatory IL-1β and TNF-α mediators compared with
the control conditions as assessed by respective ELISA
(IL-1β: up to 1.5- and 1.3-fold difference with FGF-
2/AlgPH155 and TGF-β/AlgPH155, respectively, versus
-/AlgPH155 and lacZ/AlgPH155 on day 21; TNF-α: up
to 1.4- and 1.2-fold difference with FGF-2/AlgPH155 and
TGF-β/AlgPH155, respectively, versus -/AlgPH155 and
lacZ/AlgPH155 on day 21) (Table 1) and by real-time
RT-PCR analysis (IL-1β: up to 1.5- and 1.2-fold differ-
ence with FGF-2/AlgPH155 and TGF-β/AlgPH155, re-
spectively, versus -/AlgPH155 and lacZ/AlgPH155 on day
21; TNF-α: up to 1.6- and 1.2-fold difference with FGF-
2/AlgPH155 and TGF-β/AlgPH155, respectively, versus -
/AlgPH155 and lacZ/AlgPH155 on day 21), although statis-
tical significance was not reached (always p ≥ 0.050) (Ta-
ble 1 and Fig. 4). No significant differences were noted
between the two control -/AlgPH155 and lacZ/AlgPH155
conditions or between the two candidate FGF-2/AlgPH155
and TGF-β/AlgPH155 conditions for any of these parame-
ters (always p ≥ 0.050) (Table 1 and Fig. 4).
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Discussion
Scaffold-guided gene therapy (Cucchiarini, 2016;

Cucchiarini et al., 2016; De Laporte and Shea, 2007; Jo and
Tabata, 2015; Rey-Rico et al., 2017; Seidlits et al., 2013)
is an innovative, powerful strategy for meniscus repair, es-
pecially when applied to deliver clinically adapted rAAV
gene transfer vectors (Cucchiarini, 2016; Cucchiarini et al.,
2016; Evans et al., 2009; Evans et al., 2018; Evans et al.,
2006; Rey-Rico et al., 2017). The goal of this study was to
explore the possibility of triggering the reparative activities
of primary human meniscal fibrochondrocytes by the over-
expression of two potent growth factors (FGF-2, TGF-β)
produced from rAAV gene transfer vectors delivered in the
cells via an alginate (AlgPH155) hydrogel.

The data first show that the alginate (AlgPH155) hy-
drogel was capable of significantly and durably promoting
the overexpression of the two candidate (FGF-2, TGF-β)
genes in human meniscal fibrochondrocytes upon rAAV-
mediated delivery relative to control treatments (hydrogel
without vector or with a reporter rAAV-lacZ vector) (up
to 8.9-fold difference for at least 21 days, the longest time
point evaluated), probably due to the ability of this hydrogel
to support the effective, controlled release of this class of
vectors (Diaz-Rodriguez et al., 2015). Overall, the levels of
transgene (FGF-2, TGF-β) expression reached here in hu-
man meniscal fibrochondrocytes from rAAV via hydrogel-
guided vector delivery were higher and more prolonged
than those achieved when directly applying the same vec-
tors in their free form to the cells in the same culture con-
ditions and at similar vector doses (~ 55 pg FGF-2/mL/24
h/104 cells for 21 days with FGF-2/AlgPH155 here versus ~
60 pg FGF-2/mL/24 h/104 cells for no longer than 10 days
with free rAAV-hFGF-2; ~ 1,000 pg TGF-β/mL/24 h/104
cells for 21 days with TGF-β/AlgPH155 here versus only
~ 210 pg TGF-β/mL/24 h/104 cells for 21 days with free
rAAV-hTGF-β) (Cucchiarini et al., 2009; Cucchiarini et al.,
2015), again probably resulting from the vector controlled
release capabilities of this hydrogel (Diaz-Rodriguez et al.,
2015).

The results next demonstrate that the effective,
durable overexpression of the two candidate (FGF-2, TGF-
β) genes from rAAV via alginate hydrogel-guided vector
delivery significantly and durably enhanced the levels of
cell proliferation and of specificmatrix (proteoglycan, type-
I/-III collagen) deposition in humanmeniscal fibrochondro-
cytes relative to control treatments (hydrogel without vec-
tor or with a reporter rAAV-lacZ vector) (up to 1.2-fold
difference for cell proliferation and up to 11.8-fold differ-
ence for matrix deposition, for at least 21 days, the longest
time point evaluated), probably again due to the vector con-
trolled release ability of this hydrogel (Diaz-Rodriguez et
al., 2015), while no effects were noted on type-II/-X colla-
gen expression. These observations are in good agreement
with the properties of these growth factors applied either
as recombinant agents (Adesida et al., 2006; Collier and

Ghosh, 1995; Webber et al., 1988) or via less adapted vec-
tors (nonviral, adenoviral, retroviral gene vehicles) (Goto
et al., 2000; Lee et al., 2014; Steinert et al., 2007) and
with our findings when directly applying the same vectors
in their free form to such cells in similar conditions (Cuc-
chiarini et al., 2009; Cucchiarini et al., 2015). Interest-
ingly, compared with control treatments (hydrogel without
vector or with a reporter rAAV-lacZ vector), the effects of
FGF-2/AlgPH155 and TGF-β/AlgPH155 were associated
with an increased expression of contractile α-SMA, a de-
terminant of the meniscus response to injury (Lin et al.,
2002) (up to 10.6-fold difference for at least 21 days, the
longest time point evaluated) and with a decreased inflam-
matory response (IL-1β, TNF-α) in the specific conditions
applied here (up to 1.6-fold difference for at least 21 days,
the longest time point evaluated), concordant with previ-
ous observations (Cucchiarini et al., 2009; Cucchiarini et
al., 2015; Kuo et al., 2019; Rabie et al., 2023; Zaleskas et
al., 2001). Interestingly, the FGF-2/AlgPH155 and TGF-
β/AlgPH155 systems were equally potent, in good agree-
ment with previous findings when applying low, optimally
safe doses of recombinant FGF-2 and TGF-β factors to
these cells (Pangborn and Athanasiou, 2005) as achieved
here.

Conclusions
The current study provides the proof of principle of

the potential of therapeutic (FGF-2, TGF-β) rAAV gene
vectors delivered via an alginate (AlgPH155) hydrogel as
a convenient, off-the-shelf system to advantageously trig-
ger the reparative activities in human meniscal fibrochon-
drocytes to enhance the processes of meniscus repair in fu-
ture translational applications. Of note, this strategy was
used to durably heal cartilage defects in minipigs over one
year with a functional rAAV-hIGF-I/AlgPH55 hydrogel
system (Maihöfer et al., 2021) from which rAAV is be-
ing released in a sustained, controlled manner by diffusion
without degradation (Diaz-Rodriguez et al., 2015; Madri-
gal et al., 2019). To optimize therapeutic outcomes, it will
be crucial to define the ideal vector dose provided in the hy-
drogel for applications in vivo by performing an extensive,
comparative analysis in future work. This scaffold-guided
gene therapy approach may provide less invasive options
compared with the use of genetically modified cells encap-
sulated in an alginate hydrogel to achieve this goal (Collier
and Ghosh, 1995; Cucchiarini et al., 2009; Lee et al., 2014;
Rey-Rico et al., 2016; Zhang et al., 2009a). Work is ongo-
ing to test the benefits of the present strategy to stimulate
the reparative activities of human meniscal fibrochondro-
cytes in a three-dimensional (3D) environment (Liang et al.,
2020) known to be adapted for the effective transduction
and overexpression of rAAV vectors (3D pellet cultures)
(Cucchiarini et al., 2011). A study is currently being per-
formed to monitor the effective repair of meniscal lesions
in experimental models ex vivo (Cucchiarini et al., 2009;
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Cucchiarini et al., 2015; Rey-Rico et al., 2016) and in rel-
evant animal models in vivo (Goto et al., 1999; Madry et
al., 2004; Zhang et al., 2009a) with this approach and to
test its value over a direct administration of the rAAV vec-
tors in their free form. Such an approach may further be
adapted for a safe delivery of multiple rAAV vectors with-
out interference (Tao et al., 2016) to synergize and extend
the benefits reported here with FGF-2 and TGF-β as noted
with recombinant factors, with also a potential to mecha-
nistically increase the integration of the material at repair
sites (Ionescu et al., 2012). Other therapeutic gene treat-
ments may be also envisaged like CTGF that induces the
deposition of a fibrochondrocyte matrix (Romanazzo et al.,
2018), provided that rAAV supports its effective overex-
pression and activities in the cells. Taken together, these re-
sults provide motivation to apply alginate hydrogel-guided
gene therapy to treat human meniscal lesions.
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