Abstract

Since low-back pain is increasing in ageing populations, current research efforts are focused on obtaining a better understanding of the pathophysiology of intervertebral disc degeneration and on developing new therapeutic strategies. This requires adequate and clinically relevant models of the disease process. *Ex vivo* models can provide insights into isolated aspects of the degenerative/regenerative processes involved; although, ultimately, *in vivo* models are needed for preclinical translational studies. Such models have been developed in numerous animal species with significant variations in size and disc physiology and their number is considerable. Importantly, the choice of the model has to be tailored to the aim of the study. Given the number of available options, it is important to have a good understanding of the various models of disc degeneration and to be fully aware of their advantages and limitations. After comparing the anatomy and histology of intervertebral discs in animals and humans, the present study provides an overview of the different models of *in vivo* disc degeneration. It also provides a comprehensive guide with suggested criteria to select the most appropriate animal model in a question-driven manner.

Keywords: Animal model, intervertebral disc, degeneration, nucleus pulposus, disease model, review.

Address for correspondence: Dr M.S. Fusellier, ONIRIS Imaging Diagnosis, ONIRIS, Atlantpôle-La Chantrerie, Route de Gachet, Nantes, F-44307, France.

Email: marion.fusellier@oniris-nantes.fr

Copyright policy: This article is distributed in accordance with Creative Commons Attribution Licence (http://creativecommons.org/licenses/by-sa/4.0/).
Introduction

LBP is a major health concern and an increasing cause of disability. Its socio-economic impact related to treatments and loss of productive time is clear (Ricci et al., 2006). 40% of LBP is due to IVD degeneration (Johnson et al., 2015). Therefore, research is focusing on improving the understanding of the molecular cascade and cellular events that lead to DDD. To properly assess the role of these different mechanisms in the onset and progression of DDD, many in vivo (Alini et al., 2008), in vitro (Chan et al., 2013; Watanabe et al., 2010), ex vivo (Gantenbein et al., 2015; Li et al., 2016) and in silico (Reitmaier et al., 2012) models have been used. They have notably been designed to investigate specific physiopathogenic components of DDD, with a controlled influence of cofounding factors (pH, oxygen level, osmolarity, etc.). Ideally, these models should closely mimic the human DDD. However, given the complexity of the IVD, they cannot faithfully replicate its environment and their use is restricted to physiopathogenic studies and screening of new therapies. In this context, animal models are required to apprehend more complex biochemical, biomechanical and cell-mediated processes and to test innovative therapeutic strategies.

Preclinical animal models have been considered in order to reproduce the in vivo disease and to overcome safety issues and ethical considerations before human clinical trials. These preclinical models have been developed to address the challenges regarding the etiopathogenesis and pathophysiological conditions of DDD and to favour translational research for the development of new regenerative therapeutics. Multiple models that can help the understanding of different scientific questions are available, but these models are not interchangeable and have to be carefully selected, considering the experimental purposes pursued. Therefore, while the choice of the species remains an important criterion regarding similarities to the human IVD, the DDD induction technique must not be overlooked.

In the present review, the anatomy and pathophysiology of the IVD in mammals are compared and multiple animal models that have been developed over the years are reviewed. Finally, the review highlights the criteria that can guide the selection of pertinent models as related to the goal pursued. Considering the initiating role of the NP degeneration in DDD (Colombier et al., 2014b; Vergroesen et al., 2015), IVD regenerative strategies generally target the NP. In this context, the present review mainly focusses on DDD models that can help address the understanding of NP degeneration/regeneration in the earlier disease phase.

Anatomical characteristics of the IVD and pathophysiology of DDD among species

Among the key criteria when choosing an in vivo model of DDD, anatomy (size, shape, etc.), cell content and biochemical structure of the IVD are the most relevant. Indeed, some species are not large enough to allow for testing of surgical protocols or implantable medical devices in conditions close to those in human surgeries. In other species, the IVD cell content, particularly in the NP, is too distant from that observed in humans, preventing their use in strategies that aim to stimulate cell growth or repair. Therefore, it seems important to provide an overview of IVD characteristics and pathophysiology in the main mammals used as models of DDD.

IVD degeneration: failure of a complete organ

In mammals, the IVD is a complex tripartite structure composed of the NP surrounded by the AF and sandwiched between two CEPs that confers flexibility to the spine and absorbs axial mechanical loading. Many species have a vertebral growth plate or endplate, which is contiguous with the CEPs or separated from those by a bony plate. The AF consists of two counter gradients of type I and type II collagen, with type I collagen concentrated in the outer part of the AF, while the inner part of the AF is richer in type II collagen. IVDs are formed during development by aggregation of mesenchymal cells around the notochord, followed by segmentation (Choi et al., 2008). The NP is formed of notochordal cells, collagen II and elastin fibres in an aggrecan-containing gel. In humans, during ageing, notochordal cells progressively disappear because of apoptosis or differentiation into nucleopulpocytes. In the present review, the term “nucleopulpocytes” is used to replace the former and slightly confusing terms “chondrocyte-like cell” and “NP-like cell”. In humans, after the age of 10, notochordal cells are not observed in the NP (Amelot and Mazel, 2018; Smith et al., 2011). The same phenomenon is observed in goats, sheep, cows and specific dog breeds. During NP maturation, a cellular dialog established between nucleopulpocytes and notochordal cells maintains the NP homeostasis. Indeed, as notochordal cells secrete CTGF/CCN2 and TGF-β, ECM synthesis by nucleopulpocytes is stimulated. The ECM of the healthy NP is rich in aggrecan and type II collagen fibres. Since the NP is enclosed by the AF and CEP and due to the negative charge of its GAG side chains (Adams and Roughley, 2006), it traps water and maintains a homogeneous hydraulic pressure in the IVD. The NP is avascular and its cells are maintained in a permanent hypoxia, with a low pH and high osmolarity environment. Despite the pumping action due to weight bearing and diffusion of metabolites, the pH of the NP and its O2 level are relatively low compared to the rest of the body and have a gradient throughout the disc. Nutrients reach the NP by diffusion and convective fluid flow from the...
capillaries located above the CEP. This phenomenon requires the integrity of all disc structures.

In both humans and animals, the DDD is a complex sequence of degenerative events that ultimately lead to decreased cellularity and degradation of the NP ECM with a loss of mechanical function (Colombier et al., 2014b; Colombina et al., 2008; Henry et al., 2018). Initial factors that promote DDD are diverse and not completely elucidated, including cumulative trauma with abnormal loading (Stokes and Iatridis, 2004; Vergroesen et al., 2015), impaired nutrition by calcification and/or thickening of the CEP (Accadbled et al., 2008; Benneker et al., 2005; Grignon et al., 2000) and genetic predisposition (Feng et al., 2016; Kalb et al., 2012; Munir et al., 2018). Disturbed cytokine biology and cellular dysfunction may be a response to a myriad of factors such as microtrauma, genetics and smoking, which ultimately alter the cell biology. Indeed, changes in CEP vasculature can be primary or the result of traumas and imbalance of the IL-1 system is a marker of degeneration rather than an initiating factor. Inheritance of some genes of the IL-1 family supports this assertion (Solovieva et al., 2006). The same reasoning can be applied to TNF-α and other cytokines. Even if these cytokines promote and worsen matrix degradation, they could be more markers of disc lesions rather than promoters of DDD.

Changes in the cellular population of the NP play a pivotal role in the early stages of disc degeneration. In humans, the loss of notochordal cells seems to be one of the primary events of the degenerative process (Wang et al., 2007b). As the cellularity of the NP decreases, the balance between ECM production and degradation is altered (Colombini et al., 2008), resulting in NP dehydration and loss of structural and mechanical properties of the IVD. Indeed, while the catabolic activity of MMPs/ADAMTs increases (Roberts et al., 2000), aggrecan is degraded in small fragments and its synthesis is downregulated. Thus, the ECM shows a progressive loss of PGs and a decrease in GAG content, with a transition from type II to type I collagen synthesis. The distinction between NP and AF becomes unclear and calcification of the NP is observed. At the same time, the permeability of the ECM decreases, preventing both the diffusion of nutrients and the removal of metabolites within the NP (Antoniou et al., 1996). Sclerosis of the CEP subchondral bone participates in this decrease of diffusion. In parallel, cracks, fractures and clefts appear in the CEP. ECM impairment induces a decrease in osmotic pressure leading to a marked dehydration of the NP. The loss of hydration and the subsequent drop in intradiscal pressure causes a decrease in IVD height under load and an increased sensitivity to damage by physiological loading. This phenomenon is accompanied by structural lesions such as deformation of the AF, radial cracks and tears of the NP, CEP fracturing, bulging of the disc or even disc herniation.

Comparison of IVD anatomy among animal models

The organisation of the IVD is highly comparable in all mammals, with a similar overall structure of NP, AF and CEP. Despite this similar organisation, some individual anatomical variations exist considering the IVD shape and size and the spine anatomy, which evolves from rodents to large mammals.

The anatomy and conformation of the disc matter when animal models are used to test surgical techniques and spinal implants and to evaluate their influence on the spine’s biomechanics. The overall shape of a vertebra is similar in mammals: it is composed of a vertebral body topped with a dorsal arch that circumscribes the vertebral foramen. IVDs are attached to the vertebral bodies. The dorsal arch is bound to the vertebral body by means of two pedicles. Its dorsal side supports one spinous process and transversal and articular processes that articulate with adjacent vertebral processes. Variations in vertebral anatomy have been thoroughly studied in larger mammals. Regarding the pedicles of lumbar vertebrae, their height is greater in large animals than in humans and their width is similar in baboons, sheep, pigs, calves and deer (Busscher et al., 2010; Sheng et al., 2010). The mean width and depth of the human lumbar vertebral body are greater than those of these species but its dorsoventral diameter is smaller. Sheep lumbar vertebral body volumes are 48 % smaller than those of humans and the vertebral bodies are longer than they are wide, also different from humans (Mageed et al., 2013b). These anatomical variations of the vertebrae have to be carefully considered when choosing a model because some surgical materials can be too large to be used in some species. This is particularly true for the articular processes in case of a transpedicular approach to the NP.

Considering the gross anatomy of the IVD, the lumbar discs are bean-shaped and the NP is eccentrically offset in the disc, positioned slightly dorsally. Compared to humans, rabbits have the most elliptical discs, with a smaller dorsoventral length/lateral length ratio (O’Connell et al., 2007). Bovine tail IVDs are more rounded (Monaco et al., 2016) and their NP is more central. The cow tail IVD is one of the thickest and its NP area normalised to the total disc area is one of the closest to humans (O’Connell et al., 2007). The IVD ventrodorsal diameter varies considerably and increases from the cervical to the lumbar region in humans, although it remains relatively constant along the whole spine in sheep (Wilke et al., 1997). When considering the sizes of the lumbar discs, the human lumbar IVD has systematically larger dimensions than in other primates, dog, pig, calf, goat or sheep lumbar IVDs (Table 1). Cow lumbar IVDs are the largest. Nevertheless, it is important to note that bibliographic data are quite variable even for the same species. This can be explained by the different techniques used for evaluating disc anatomy and size and also by...
the differences in age or breed of the animals used, which are often not specified.

Human and sheep lumbar IVDs are domed on their rostral and caudal surface in a biconvex shape. On the contrary, pig’s lumbar discs are convex rostrally and concave caudally. Bovine lumbar IVDs are described differently depending on the authors: cupola-shaped (Alini et al., 2008) or biconvex (Cotterill et al., 1986). IVDs are thinner dorsally and thicker in the ventral region. The height of the discs contributes to a substantial part of the total length of the lumbar spine in humans, accounting for 25% of the spinal length, but this is more than 10% in calves. Sheep, goat, pig and calf lumbar IVDs are thinner than the human IVD, with the smallest disc area (Mageed et al., 2013a; O’Connell et al., 2007; Schmidt and Reitmaier, 2012). When considering not the gross dimensions but the relative dimensions of the disc (normalised disc height, i.e. disc height scaled by lateral width), the normalised disc height is less than in humans in most mammal species and, interestingly, mouse and rat lumbar IVDs are the most geometrically analogous to the human IVD (O’Connell et al., 2007). However, the thickness of mouse’s disc increases from birth until 4 months and decreases with ageing (Cao et al., 2017). These considerations are of interest because the size of the disc affects nutrition in relation with diffusion distance. Cellularity is also greatly influenced by size and diffusion (Guehring et al., 2009).

These data must be interpreted with care, given that they are influenced by breed, individual size, gender and, of course, age. Large animal models seem to better mimic the challenging nutritional environment of human IVDs.

Table 1. Comparison of cell content and geometry of lumbar IVD of animal models and humans. Dimensions are expressed as mean ± SD.

<table>
<thead>
<tr>
<th>Species</th>
<th>Presence of notochordal cells in adulthood</th>
<th>Disc height (mean ± SD) (mm)</th>
<th>DV width (mm)</th>
<th>Lateral width (mm)</th>
<th>Disc surface (mm²)</th>
<th>NP area (mm²)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse</td>
<td>Yes</td>
<td>0.29 ± 0.05 (c)</td>
<td>0.98 ± 0.11 (c)</td>
<td>1.35 ± 0.06 (c)</td>
<td>1.04 ± 0.14 (c)</td>
<td>0.33 ± 0.07 (d)</td>
<td>a. Beckstein et al., 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.31 ± 0.03 (a, d)</td>
<td>1.08 ± 0.09 (a)</td>
<td>1.82 ± 0.1 (a)</td>
<td>1.61 ± 0.18 (a)</td>
<td>0.43 ± 0.09 (a)</td>
<td>b. Cao et al., 2017</td>
</tr>
<tr>
<td>Rat</td>
<td>Yes</td>
<td>0.61 ± 0.17 (c)</td>
<td>2.75 ± 0.55 (c)</td>
<td>3.77 ± 0.54 (c)</td>
<td>8.28 ± 2.46 (c)</td>
<td>3.34 ± 0.68 (a)</td>
<td>a. Beckstein et al., 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.77 ± 0.04 (a)</td>
<td>3.16 ± 0.27 (a)</td>
<td>4.49 ± 0.16 (a)</td>
<td>11.85 ± 0.92 (a)</td>
<td>5 ± 2.06 (e)</td>
<td>b. Bowles et al., 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.99 ± 0.24 (e)</td>
<td>3.2 (b), 4.36 ± 0.16 (e)</td>
<td>5.79 ± 0.29 (e)</td>
<td>20.4 ± 2.1 (a)</td>
<td></td>
<td>c. Elliott and Sarver, 2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.02 ± 0.23 (d)</td>
<td>1.31 ± 0.27 (d)</td>
<td></td>
<td></td>
<td></td>
<td>d. O’Connell et al., 2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.03 ± 0.04 (a)</td>
<td>1.59 ± 0.28 (a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rabbit</td>
<td>Yes</td>
<td>1.42 ± 0.39 (b)</td>
<td>6.59 ± 0.19 (b)</td>
<td>12.7 ± 0.9 (b)</td>
<td>73.4 ± 6.1 (b)</td>
<td>18 ± 1.6 (b)</td>
<td>a. Beckstein et al., 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.4 ± 0.23 (a)</td>
<td>7.46 ± 0.65 (a)</td>
<td>13.81 ± 1.19 (a)</td>
<td>90 ± 10 (a)</td>
<td>22.6 ± 6 (a)</td>
<td>b. O’Connell et al., 2007</td>
</tr>
<tr>
<td>Sheep</td>
<td>No</td>
<td>2.5 (b)</td>
<td>18.3 ± 1.8 (d)</td>
<td>24.9 ± 1.7 (d)</td>
<td>511 ± 61 (a)</td>
<td>193 ± 31 (a)</td>
<td>a. Beckstein et al., 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.6 ± 0.5 (c)</td>
<td>19.78 ± 1.43 (a)</td>
<td>30.03 ± 1.2 (a)</td>
<td>676 ± 122 (e)</td>
<td>267 ± 79 (e)</td>
<td>b. Casaroli et al., 2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.3 ± 1 (c)</td>
<td>21.6 ± 2.1 (e)</td>
<td>34.5 ± 2.9 (c)</td>
<td>670 ± 71 (b)</td>
<td></td>
<td>c. Mageed et al., 2013a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.4 ± 0.46 (a)</td>
<td>22 (b)</td>
<td></td>
<td>173 ± 25 (b)</td>
<td></td>
<td>d. Monaco et al., 2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.93 ± 0.07 (e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>e. O’Connell et al., 2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2 ± 0.4 (f)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>f. Wilke et al., 1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.5 ± 0.4 (f)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.9 ± 0.4 (d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goat</td>
<td>No</td>
<td>4.28 ± 0.73 (b)</td>
<td>21.2 ± 1.6 (b)</td>
<td>35.9 ± 2.1 (b)</td>
<td>380.6 ± 32.6 (a)</td>
<td>404.9 ± 48.4 (a)</td>
<td>a. Paul et al., 2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.1 ± 1 (a)</td>
<td>25.6 ± 1.6 (a)</td>
<td></td>
<td>404.9 ± 48.4 (a)</td>
<td></td>
<td>b. Showalter et al., 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.2 ± 1.4 (a)</td>
<td></td>
<td></td>
<td>670 ± 71 (b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pig</td>
<td>Yes</td>
<td>2.6 ± 0.8 (b)</td>
<td>25 ± 2.3 (c)</td>
<td>37.13 ± 1.35 (a)</td>
<td>872 ± 80 (a)</td>
<td>232 ± 25 (a)</td>
<td>a. Beckstein et al., 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.46 ± 0.71 (a)</td>
<td>25.56 ± 1.75 (a)</td>
<td>38 ± 3.8 (c)</td>
<td>38 ± 3.8 (c)</td>
<td></td>
<td>b. Busscher et al., 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.8 ± 1.3 (c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>c. Monaco et al., 2016</td>
</tr>
<tr>
<td>Calf</td>
<td>No</td>
<td>6.09 ± 1.32</td>
<td>32.75 ± 1.9</td>
<td>39.33 ± 1.6</td>
<td>1100 ± 86</td>
<td>273 ± 25</td>
<td>Beckstein et al., 2008</td>
</tr>
<tr>
<td>Human</td>
<td>No</td>
<td>6.07 ± 1.97 (c)</td>
<td>37.2 ± 4.7 (f)</td>
<td>55.38 ± 2.01 (a)</td>
<td>1560 ± 320 (c)</td>
<td>479 ± 110 (f)</td>
<td>a. Beckstein et al., 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.9 ± 1.8 (d)</td>
<td>37.67 ± 2.02 (a)</td>
<td>55.9 ± 9.4 (f)</td>
<td>1727 ± 550 (f)</td>
<td>598 ± 46 (a)</td>
<td>b. Busscher et al., 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.8 ± 3.2 (b)</td>
<td></td>
<td></td>
<td>1925 ± 184 (a)</td>
<td></td>
<td>c. Elliott and Sarver, 2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 ± 1.6 (d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>d. Mageed et al., 2013a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.9 ± 2.7 (c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>e. Miao et al., 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.91 ± 0.83 (a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>f. O’Connell et al., 2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.3 ± 0.3 (f)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.7 ± 2.5 (b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cell content and biochemical pattern of the NP

As mentioned above, the cell population in the NP changes throughout the animal’s life, more particularly during DDD. Biochemical composition also follows the same evolution. The cell population of the NP is not similar among species (Table 1) and differences must be known when studying IVD
The gradual disappearance of notochordal cells seems to be the common denominator in the process leading to DDD and has been observed in humans, dogs, sheep, goats, cows and monkeys (Table 1) (Bergknut et al., 2012; Daly et al., 2016; Hansen et al., 2017; Hoogendoorn et al., 2008). The example of the dog is particularly striking. Dogs are classically divided into two populations: CD and NCD. It has long been thought that DDD was induced by different processes in the two types of dogs, chondroid versus fibroid metaplasia. In fact, even if the time course of DDD onset is not similar, DDD involves the same process as in humans, i.e. a replacement of notochordal cells by nucleopulpocytes (Hansen et al., 2008). In NCD dogs, this phenomenon is delayed because notochordal cells persist longer than in CD dogs. Nonetheless, even in NCD dogs, DDD will occur at preferential sites; with the highest incidence at the lumbosacral junction, a biomechanically challenging anatomical location. When degeneration occurs in NCD dogs, regardless of the location, the biochemical, histological, radiological and clinical representation resembles that of humans suffering LBPs. Notochordal cells also persist in the NP of other species such as mice, rats, rabbits and pigs (Omlor et al., 2009). Typically, notochordal cells persist in the NP of sand rats, mice and rats throughout their life and at least until 12 months old rabbits (Hunter et al., 2004). Nevertheless, genetics strongly influence this phenomenon as the cell phenotype is dependent on the strain in mice (Choi et al., 2018). In pigs, notochordal cells are also observed in the NP during adulthood.

While the NP cellular phenotype evolves, the biochemical profile also changes as the ECM synthesis decreases (anabolism) and its degradation increases (catabolism). This explains a depletion of GAG and a reduced water-binding capacity with a reduction of IVD height. GAG content in the NP of healthy IVDs varies from one species to another as does water content (Table 2). It is notable that in baboons, goats and sheep, NP hydration and collagen contents are similar to those observed in humans (Beckstein et al., 2008), whereas pig IVDs exhibit half as much collagen as human IVDs. GAG content per dry weight is in the same range in humans, goats, calves, pigs, rabbits, rats and sheep. Once again, these experimental data must be taken with care since it has been clearly established that the composition varies not only with ageing but also with spinal level.

Table 2. Comparative water and collagen content of IVD among species. Dimensions are expressed as mean ± SD. L : lumbar disc, T : tail disc.

<table>
<thead>
<tr>
<th>Species</th>
<th>Percentage of water content (NP)</th>
<th>GAG per dry weight (mg/mg)</th>
<th>Total collagen content normalised by dry weight (mg/mg)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat – L</td>
<td>82 ± 9</td>
<td>384 ± 108</td>
<td></td>
<td>Beckstein et al., 2008</td>
</tr>
<tr>
<td>Rat – T</td>
<td>75 ± 7</td>
<td>95.2 ± 55.0</td>
<td></td>
<td>Beckstein et al., 2008</td>
</tr>
<tr>
<td>Rabbit</td>
<td>82 ± 5</td>
<td>579 ± 158</td>
<td></td>
<td>Beckstein et al., 2008</td>
</tr>
</tbody>
</table>
| Sheep | 75 ± 3 (a) 86 ± 4 (b) | 547 ± 69.5 (a) | 19.2 ± 10.6 (c) | a. Beckstein et al., 2008
 b. Reid et al., 2002
 c. Showalter et al., 2013 |
| Goat | 74.7 ± 1.1 (a) 84 ± 3 (b) | 335 ± 51 (b) | 18.5 ± 5.8 (b) | a. Detiger et al., 2013
 b. Showalter et al., 2013 |
| Pig | 83 ± 2 (a) | 379 ± 160 (a) | 5.8 ± 2.9 (b) | a. Beckstein et al., 2008
 b. Showalter et al., 2013 |
| Baboon | 80 ± 4 (a) | 971 ± 238 (a) | 18.6 ± 6.7 (b) | a. Beckstein et al., 2008
 b. Showalter et al., 2013 |
| Calf | 80 ± 2 (a) | 384 ± 34.0 (a) | 60.3 ± 18.5 (b) | a. Beckstein et al., 2008
 b. Showalter et al., 2013 |
| Cow – T | 83 ± 3 | 548 ± 146 | | Beckstein et al., 2008 |

Note: The cell population influences, among other processes, PG metabolism (Aguiar et al., 1999), hyaluronan production (Stevens et al., 2000) and progenitor cell function (Chan et al., 2014). Thus, the choice of an animal model in which notochordal cells persist in adulthood could greatly influence experimental results and alter responses to treatment by growth factors: notochordal cells could contribute to a self-repair process of the IVD that is not observed in humans. Similarly, results of cellular regenerative therapies could be affected by the potential presence of notochordal cells that could be responsible for regenerative effects instead of, or in combination with, transplanted cells.
Biomechanical characteristics of the IVD

Contrary to nearly all animals (except for non-human primates) used as models of DDD, humans have a bipedal locomotion. Therefore, the influence of quadrupedal locomotion on IVD biomechanics is often discussed.

First, in lumbar spine segments, the flexion and extension range are smaller for calves, sheep and pigs as compared to humans (Alini et al., 2008). However, after normalisation by polar moment of inertia and disc height, axial torsional properties of lumbar discs of mice, rats, rabbits, calves, baboons and goats are similar to humans (Showalter et al., 2013). Secondly, vertical posture significantly influences IVD mechanical loading because of the weight of the human upper body. Mechanical forces exerted on the human lumbar spine are of lower magnitude than in quadrupeds. The effect of the upright position seems largely counterbalanced by muscle contraction and ligament tension, which significantly contribute to the load to which IVDs are exposed (Wilke et al., 2003). Thus, since muscle and ligament forces are necessary to stabilise the spine in a horizontal position, the force they exert on the IVD is greater in quadrupeds than in humans. As a result, even if direct measures differ, after normalisation by geometric parameters (disc height and area), the capacity of IVDs to resist mechanical constraints appears quite similar across quadruped species, including mice, rats, rabbits, calves, pigs, baboons and sheep (Beckstein et al., 2008). Moreover, higher axial forces on the lumbar IVD of a quadruped cause higher intradiscal pressure than in humans, as demonstrated in sheep and runt cows (Buttermann et al., 2009; Reitmaier et al., 2013). Loading of the lumbar IVD is proposed to be greater in large quadrupeds than in humans, corroborated by the higher bone mineral density of the vertebral bodies of sheep, calves and pigs when compared to humans.

These data undoubtedly indicate that quadrupedal mammals can be considered relevant models of lumbar IVD biomechanics and degeneration as compared to bipedal organisms.

Animal models of DDD

In an attempt to mimic the natural pathophysiological process of human IVD degeneration, numerous models have been developed, in both large and small animals (Table 3, 4a,b). These models mainly correspond to spontaneously occurring forms of DDD because of ageing or genetic conditions. Specific breeding environments (e.g. genetic backgrounds, rearing method, nutrition) can enhance or accelerate the occurrence of DDD. Besides these models, experimentally induced models have been proposed to achieve higher reliability, reproducibility, cost-effectiveness and development speed. In these models, DDD develops as a result of mechanical or structural lesions of the disc. Mechanical models are based on alterations of mechanical stress applied to the IVD. They involve changes in motion (instability or immobilisation), modified loading by means of bending, postural changes or compression. Structural models are based on direct injury to a part of the IVD (AF or CEP with or without extension to NP). These lesions can be traumatic, inflammatory or chemical (Fig. 1).

Spontaneous models of DDD

Animal models of spontaneously occurring DDD are limited in number and they have the drawback of an inconsistent onset and development over a long and sometimes variable period, which is in line with clinical development and progress of DDD. Furthermore, their costs are relatively high, especially for larger species. Nevertheless, they remain very useful when evaluating natural degenerative pathophysiological processes.

Degeneration related to ageing

DDD can spontaneously affect several animal species including specific strains of mice such as SM/J, sand rats, rabbits, sheep and dogs. Age-related IVD degeneration has also been described in C57BL/6 mice 14-22 months old (Ohnishi et al., 2018), with severity progressing with ageing, but SM/J mice develop DDD as early as 17 weeks of age in parallel with decreased cellularity in the NP. Notwithstanding, considering that the genetic background of mice may have an influence on the healing capacity of joint cartilaginous tissues, it remains to be determined whether these also relate to a differential susceptibility in developing DDD. Mediterranean sand rats spontaneously develop early (by the age of 2 months) and widespread DDD, associated with diabetes mellitus, when fed with a standard laboratory diet (Silberberg, 1988). The DDD in this model is characterised by a loss of notochordal cells in the NP, annular disorganisation, end-plate sclerosis, osteophytosis associated with dehydration and NP osmotic pressure (Gruber et al., 2002; Ziv et al., 1992). These modifications alter the biomechanical properties of the whole IVD. The lesions extend from the lumbar IVD to the tail and affect around 50 % of the animals by the age of 18 months (Moskowitz et al., 1990). DDD in the sand rat is also generally associated with diffuse idiopathic skeletal hyperostosis and radiographic signs of bony degeneration (facet changes, wedging, end plate spurring and calcification). Other animal species have been shown to develop spontaneous degeneration unrelated to diabetes, such as ageing in mice (Ohnishi et al., 2018), rabbits (Clouet et al., 2011; Leung et al., 2008; Lucas et al., 2012), dogs (Hansen et al., 2017), sheep (Nisolle et al., 2016), baboons and macaques (Lauerman et al., 1992; Nuckley et al., 2008; Platenberg et al., 2001). In larger animal models, DDD has been characterised extensively with progressive
decrease of cellularity and dehydration of the NP (confirmed with Boos and Pfirrmann scoring), disc space narrowing and sclerosis of CEP.

Degeneration related to inherited disorders

Apart from the effect of ageing, some species have been shown to present IVD degeneration secondary to the presence of congenital lesions such as kyphoscoliosis and chondrodystrophy.

In dogs and mice, kyphoscoliosis induces early IVD degeneration. Kyphoscoliosis is due to malformations of vertebral bodies caused by failure of vertebral ossification centres to form and/or to fuse properly during embryonic or foetal development.

Table 3. Review of spontaneous animal models of IVD degeneration.

<table>
<thead>
<tr>
<th>Type of models</th>
<th>Species</th>
<th>Onset of degeneration</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spontaneous aging</td>
<td>Mouse C57BL/6</td>
<td>14-22 months</td>
<td>Ohnishi et al., 2018</td>
</tr>
<tr>
<td></td>
<td>Mouse SM/J</td>
<td>17 weeks</td>
<td>Choi et al., 2018</td>
</tr>
<tr>
<td></td>
<td>Rabbit</td>
<td>6-30 months</td>
<td>Clouet et al., 2011</td>
</tr>
<tr>
<td></td>
<td>Sheep</td>
<td>4-7 years</td>
<td>Nisolle et al., 2016</td>
</tr>
<tr>
<td></td>
<td>Macaque</td>
<td>22.3 years</td>
<td>Nuckley et al., 2008</td>
</tr>
<tr>
<td>Accelerated degeneration</td>
<td>Mediterranean sand rat</td>
<td>2-12 months</td>
<td>Gruber et al., 2006</td>
</tr>
<tr>
<td></td>
<td>CD dogs</td>
<td>3-7 years</td>
<td>Bergknut et al., 2011</td>
</tr>
<tr>
<td>Inherited lesions</td>
<td>Mouse</td>
<td>2.5 months</td>
<td>Mason and Palfrey, 1984 Venn and Mason, 1986</td>
</tr>
<tr>
<td></td>
<td>NCD dogs</td>
<td>1-4 years</td>
<td>Faller et al., 2014</td>
</tr>
<tr>
<td></td>
<td>CD dogs</td>
<td>3-7 years</td>
<td>Bergknut et al., 2011</td>
</tr>
<tr>
<td>Genetic models</td>
<td>Mouse</td>
<td>3 months</td>
<td>Boyd et al., 2008 Kimura et al., 1996</td>
</tr>
<tr>
<td></td>
<td>Myostatin knockout</td>
<td>6 months</td>
<td>Hamrick et al., 2003</td>
</tr>
<tr>
<td></td>
<td>Cmd aggrecan knockout mice</td>
<td>4 weeks</td>
<td>Watanabe and Yamada, 2002</td>
</tr>
<tr>
<td></td>
<td>Progressive ankylosis</td>
<td>3 months</td>
<td>Sweet and Green, 1981</td>
</tr>
<tr>
<td></td>
<td>Mutation in Mecom</td>
<td>2 weeks</td>
<td>Juneja et al., 2014</td>
</tr>
<tr>
<td></td>
<td>Caveolin-1-null mice</td>
<td>1 month</td>
<td>Bach et al., 2016</td>
</tr>
<tr>
<td></td>
<td>Murine progeroid syndrome</td>
<td>5-6 months</td>
<td>Vo et al., 2012</td>
</tr>
<tr>
<td></td>
<td>Neurofibromatosis type 1 mice</td>
<td>2-6 months</td>
<td>Rhodes et al., 2015 Wang et al., 2011</td>
</tr>
<tr>
<td></td>
<td>Col2a1 for collagen II</td>
<td>1 month</td>
<td>Sahlman et al., 2001</td>
</tr>
<tr>
<td></td>
<td>HLA-B27</td>
<td>4-5 months</td>
<td>Taurog et al., 1993</td>
</tr>
</tbody>
</table>
It induces spinal deformity that leads to dorsal (kyphosis) and lateral (scoliosis) curvature. In mice, the kyphoscoliosis peptidase gene (ky) has been identified. Its transcript has been identified in skeletal muscles and heart and the ky protein belongs to a family of transglutaminase-like proteins (Blanco et al., 2004). A homozygous variant of this gene leads to neuromuscular disorder with decreased strength of postural muscles inducing kyphoscoliosis. In 80 d old homozygous recessive mice (ky/ky), kyphoscoliosis is associated with cervicothoracic DDD characterised by decreased cellularity, loss of distinction between NP and AF, reduced PG synthesis and size as well as smaller cervicothoracic IVD size (between the fifth cervical and the second thoracic vertebrae) (Mason and Palfrey, 1984; Venn and Mason, 1986).

The mechanical effect of abnormal spine posture or anomalous alignment of vertebrae on disc degeneration has been thoroughly documented in dogs in association with vertebral malformations (Faller et al., 2014) (Fig. 2). Numerous malformations affect canine thoracic or thoracolumbar vertebrae and induce an alteration of shape such as hemivertebra, ventral hypoplasia or aplasia (Gutierrez-Quintana et al., 2014).

Chondrodystrophy is also associated with premature disc degeneration. Chondrodystrophy is a disorder of endochondral ossification and chondrogenesis that results in impaired ossification and growth of long bones. The lesion is associated with a highly expressed FGF4 retrogene insertion on chromosome 12 (Brown et al., 2017; Parker et al., 2009). Numerous popular canine breeds have been selected with this anomaly such as basset hound, beagle,
Table 4b. Review of experimentally induced structural animal models of IVD degeneration.

<table>
<thead>
<tr>
<th>Type of models</th>
<th>Species</th>
<th>Onset of degeneration</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chymopapain</td>
<td>Rabbit</td>
<td>6 d</td>
<td>Kieser et al., 1994</td>
</tr>
<tr>
<td></td>
<td>CD dogs</td>
<td>1 d to 32 weeks</td>
<td>Atiola et al., 1988; Melrose et al., 1996</td>
</tr>
<tr>
<td></td>
<td>NCD dogs</td>
<td>1-3 weeks</td>
<td>Bradford et al., 1983; Kudo et al., 1993; Lü et al., 1997; Spencer et al., 1985; Wakano et al., 1983</td>
</tr>
<tr>
<td>Baboon</td>
<td></td>
<td>4 weeks</td>
<td>Zook and Kobrine, 1986</td>
</tr>
<tr>
<td>Rhesus macaque</td>
<td></td>
<td>6 weeks</td>
<td>Sugimura et al., 1996</td>
</tr>
<tr>
<td>Cow</td>
<td></td>
<td>3 weeks</td>
<td>Roberts et al., 2008</td>
</tr>
<tr>
<td>Rat</td>
<td></td>
<td>4-12 weeks</td>
<td>Boxberger et al., 2008; Norcross et al., 2003</td>
</tr>
<tr>
<td></td>
<td>Rabbit</td>
<td>7-10 d</td>
<td>Henderson et al., 1991; Takahashi et al., 1996</td>
</tr>
<tr>
<td></td>
<td>CD dogs</td>
<td>7-21 d</td>
<td>Fry et al., 1991</td>
</tr>
<tr>
<td></td>
<td>NCD dogs</td>
<td>1 week</td>
<td>Lü et al., 1997</td>
</tr>
<tr>
<td>Goat</td>
<td></td>
<td>12-26 weeks</td>
<td>Hoogendoorn et al., 2008</td>
</tr>
<tr>
<td></td>
<td>Sheep</td>
<td>1 week</td>
<td>Sasaki et al., 2001</td>
</tr>
<tr>
<td></td>
<td>Rhesus macaque</td>
<td>6 weeks</td>
<td>Sugimura et al., 1996</td>
</tr>
<tr>
<td>Chondroitinase ABC</td>
<td>Rabbit</td>
<td>4-12 weeks</td>
<td>BRE, 2008; Melrose et al., 1996</td>
</tr>
<tr>
<td></td>
<td>CD dogs</td>
<td>1 week</td>
<td>Lü et al., 1997</td>
</tr>
<tr>
<td></td>
<td>NCD dogs</td>
<td>7-21 d</td>
<td>Fry et al., 1991</td>
</tr>
<tr>
<td></td>
<td>Goat</td>
<td>7-21 d</td>
<td>Fernandez et al., 1991</td>
</tr>
<tr>
<td></td>
<td>Sheep</td>
<td>1 week</td>
<td>Sasaki et al., 2001</td>
</tr>
<tr>
<td></td>
<td>Rhesus macaque</td>
<td>6 weeks</td>
<td>Sugimura et al., 1996</td>
</tr>
<tr>
<td>Hyaluronidase</td>
<td>Rabbit</td>
<td>2-6 d</td>
<td>Fusellier et al., 2016</td>
</tr>
<tr>
<td>Collagenase</td>
<td>NCD dogs</td>
<td>2 weeks</td>
<td>Bromley et al., 1980; Spencer et al., 1985</td>
</tr>
<tr>
<td></td>
<td>Baboon</td>
<td>4 weeks</td>
<td>Zook and Kobrine, 1986</td>
</tr>
<tr>
<td></td>
<td>Rhesus macaque</td>
<td>7 d to 14 months</td>
<td>Stern and Coulson, 1976</td>
</tr>
<tr>
<td></td>
<td>Cow</td>
<td>Immediate</td>
<td>Antoniou et al., 2006</td>
</tr>
<tr>
<td>Trypsin</td>
<td>Cow</td>
<td>16 h to 3 weeks</td>
<td>Mwale et al., 2008; Roberts et al., 2006</td>
</tr>
<tr>
<td>Ischemic lesion</td>
<td>Rabbit</td>
<td>3-6 months</td>
<td>Wei et al., 2015</td>
</tr>
<tr>
<td>Pingyangmycin</td>
<td>Rabbit</td>
<td>3-6 months</td>
<td>Wei et al., 2015</td>
</tr>
<tr>
<td>Ischemic lesion</td>
<td>Rhesus macaque</td>
<td>1-3 months</td>
<td>Zhou et al., 2013b</td>
</tr>
<tr>
<td>Bleomycin</td>
<td>Rhesus macaque</td>
<td>3-15 months</td>
<td>Wei et al., 2014</td>
</tr>
<tr>
<td>Perforation</td>
<td>Pig</td>
<td>3-7 months</td>
<td>Holm et al., 2004; Cirotti et al., 2005</td>
</tr>
<tr>
<td>Needle puncture</td>
<td>Mouse</td>
<td>2-8 weeks</td>
<td>Martin et al., 2013; Ohnishi et al., 2016; Tian et al., 2018</td>
</tr>
<tr>
<td></td>
<td>Rat</td>
<td>7-28 d</td>
<td>Hsieh et al., 2009; Issy et al., 2013</td>
</tr>
<tr>
<td></td>
<td>Rabbit</td>
<td>2-9 weeks</td>
<td>Chai et al., 2016; Kim et al., 2015; Luo et al., 2018; Masuda et al., 2004; Sobajima et al., 2005</td>
</tr>
<tr>
<td>Annulotomy</td>
<td>Rat</td>
<td>7-28 d</td>
<td>Rousseau et al., 2007</td>
</tr>
<tr>
<td></td>
<td>Rabbit</td>
<td>2-6 weeks</td>
<td>Lipson and Muir, 1981; Masuda et al., 2004</td>
</tr>
<tr>
<td></td>
<td>NCD dogs</td>
<td>4-12 weeks</td>
<td>Chen et al., 2015</td>
</tr>
<tr>
<td></td>
<td>Dog</td>
<td>4-6 months</td>
<td>Olsewski et al., 1996</td>
</tr>
<tr>
<td></td>
<td>Sheep</td>
<td>3-12 months</td>
<td>Freeman et al., 2016; Schollum et al., 2010</td>
</tr>
<tr>
<td></td>
<td>Pig</td>
<td>3 months</td>
<td>Kääpää et al., 1994</td>
</tr>
<tr>
<td>Annulotomy/ drill bit</td>
<td>Goat</td>
<td>2 months</td>
<td>Zhang et al., 2011</td>
</tr>
<tr>
<td>Partial annulotomy</td>
<td>Sheep</td>
<td>4-12 months</td>
<td>Osti et al., 1990</td>
</tr>
<tr>
<td>Annulotomy + collagenase</td>
<td>Rhesus macaque</td>
<td>7 d to 14 months</td>
<td>Stern and Coulson, 1976</td>
</tr>
<tr>
<td>Nucleotomy</td>
<td>Rabbit</td>
<td>2-6 weeks</td>
<td>Lucas et al., 2012a; Sakai et al., 2005</td>
</tr>
<tr>
<td></td>
<td>CD dogs</td>
<td>4-6 weeks</td>
<td>Serigano et al., 2010; Bach et al., 2018</td>
</tr>
<tr>
<td></td>
<td>Sheep</td>
<td>12-48 weeks</td>
<td>Guder et al., 2009; Reitmaier et al., 2014; Russo et al., 2016; Vadala et al., 2013; Vadala et al., 2015</td>
</tr>
<tr>
<td></td>
<td>Pig</td>
<td>3-24 weeks</td>
<td>Acosta et al., 2011; Omlor et al., 2009</td>
</tr>
<tr>
<td>Partial nucleotomy</td>
<td>NCD dogs</td>
<td>6 weeks</td>
<td>Ganey et al., 2009</td>
</tr>
<tr>
<td>Laser</td>
<td>Rabbit</td>
<td>60-90 d</td>
<td>Fusellier et al., 2016; Lucas et al., 2012a</td>
</tr>
<tr>
<td>Cryoinjury</td>
<td>Pig</td>
<td>2 months</td>
<td>Flouzat-Lachaniette et al., 2018</td>
</tr>
</tbody>
</table>
bulldogs, Cavalier King Charles spaniel, dachshund, Lhassa Apso, Pekingese and Welsh corgis (Brisson, 2010; Cherrone et al., 2004; Griffin et al., 2009; Priester, 1976). Animals affected exhibit premature IVD degeneration at all disc levels, with a high incidence of disc herniation at the thoracolumbar junction. For a long time, CD dogs were thought to have a specific form of DDD different from NCD dogs. This form had been named chondroid degeneration in CD breeds versus fibroid metaplasia in NCD dogs. This hypothesis has been recently disputed (Hansen et al., 2017) and it has been demonstrated that the DDD of CD and NCD breeds follow the same pattern but with a different timeline. Therefore, canine DDD is similar to what is observed in human DDD, characterised by a replacement of notochordal cells by nucleopulpocytes (Bergknut et al., 2012) associated with an early decrease in PG and GAG content and increased MMP-2 activity. The notochordal cell decrease is more gradual in NCD breeds where they can still be found in the IVD during adulthood.

Degeneration related to alteration in gene expression
Genetically modified animals, including the use of knock-out models, have been developed to study the contribution of specific proteins or mutation to disc degeneration. Numerous varieties of transgenic mice have been investigated.

- **Cmd aggrecan knockout** mice have a haploinsufficiency of aggrecan and develop cervical DDD (Watanabe and Yamada, 2002).
- Mutation in type IX collagen induces mucous cervical DDD in mice (Allen et al., 2009; Boyd et al., 2008) and type IX collagen gene polymorphisms increase risk for disc degeneration in humans (Feng et al., 2016; Paassilta et al., 2001). In the same way, type II collagen mutation such as knockout allele of Col2a1 induces DDD and premature endplate calcification (Sahlman et al., 2001).

 - **Myostatin knockout** mice (Mstn−/−) exhibit increased muscle mass associated with increase of bone mineral density. Indeed, myostatin (GDF8) is a negative regulator of skeletal muscle growth. The mutation also induces disc degeneration associated with a decreased proteoglycan content in the hyaline end plates and inner AF (Hamrick et al., 2003). Similarly, GDF5 knockout mice present DDD demonstrated by a decreased T2 signal in MRI and disorganisation of aggrecan and type II collagen mRNA (Li et al., 2004).

- In mice, other genetic models have been shown to be associated with DDD: progressive ankylosis mice (Sweet and Green, 1981), a Mecom mutation in mice (Juneja et al., 2014), caveolin-1-null mice (Bach et al., 2016), neurofibromatosis type 1 mice (Rhodes et al., 2015; Wang et al., 2011) and murine progeroid syndrome (Vo et al., 2012). In rats, mutations have also been described such as HLA-B27 rats (Hammer et al., 1990; Taurog et al., 1993).

Other genetic murine models have been shown to be associated with DDD: progressive ankylosis (Sweet and Green, 1981), Mecom mutation (Juneja et al., 2014), caveolin-1-null (Bach et al., 2016), neurofibromatosis type 1 (Rhodes et al., 2015; Wang et al., 2011) and progeroid syndrome (Vo et al., 2012). In rats, mutations have also been described such as HLA-B27 rats (Hammer et al., 1990; Taurog et al., 1993).

Experimentally induced disc disease
Contrary to spontaneous models that do not require direct intervention on the spine or IVD, numerous

![Fig. 1. Schematic representation of the different in vivo animal models of DDD.](www.ecmjournal.org)
experimental models have been developed with the aim of more accurately controlling location and time course of the degeneration as well as the amplitude of the induced injury. These models require a modification of spine kinematics (mechanical models) or direct damage to the IVD or CEP (structural models).

Mechanical models
Mechanical models are based on the hypothesis that alterations of the mechanical stress applied to the spine would be the source of premature ageing of the IVD. This hypothesis is supported by epidemiological data suggesting an association between IVD degeneration and abnormal loading conditions, including immobilisation (Choi et al., 2017). Stresses that have been tested are numerous and vary from overloading with static or dynamic disc compression (Ching et al., 2003; Ching et al., 2004; Court et al., 2001; Iatridis et al., 1999; Krooer et al., 2002; Lotz et al., 1998; Walsh and Lotz, 2004) to postural changes such as bipedalism (Cassidy et al., 1988; Higuchi et al., 1983). Hyperactivity has been investigated in relation to running (Puustjarvi et al., 1993; Puustjarvi et al., 1994; Saamanen et al., 1993) as well as instability or distraction (Hadjipavlou et al., 1998; Krooer et al., 2005), fusion (Bushell et al., 1978; Phillips et al., 2002; Taylor et al., 1976) and even immobilisation (Wang et al., 2001). Most of these models require complex and invasive surgeries and some are barely compatible with ethical standards.

Mechanical models – postural changes
The idea of evaluating the impact of postural changes upon the ageing of the IVD came from the hypothesis that the human erect posture elicits increased mechanical stress on the spine, resulting in disc abnormalities and subsequent degeneration. From this premise, models of bipedal mice and rats have been developed to increase gravity loading in the lumbar spine by means of forelimb clipping or amputation (Cassidy et al., 1988; Higuchi et al., 1983). Bipedalism has sometimes been associated with pinealectomy (Machida et al., 2005). Although ethically questionable, these models have initially shown that age-related disc degeneration accelerates in mice (Higuchi et al., 1983), with replacement of notochordal cells by nucleopulpocytes in the NP. Nevertheless, although it has been hypothesised that bipedalism may cause an increase in the time spent in the erect posture, it has been shown that bipedal rats spend less time in the erect posture than their quadruped equals (Bailey et al., 2001). Therefore, the origin of disc degeneration in the models remains disputed. These models, for obvious ethical considerations, are no longer used.

Mechanical models – compression
Compression is thought to play a pivotal role in DDD. Indeed, compression of the IVD increases pressure in the NP, associated with tension in the AF. When stress applied to the IVD exceeds the swelling pressure, fluid leakage from the IVD is observed, with redistribution of compression to the AF. Moreover, excessive spinal loading is responsible for notochordal cell death and production of type II collagen and aggrecan in the NP and activation of proteolytic enzymes. Dynamic hydrostatic pressurisation induces maturation of notochordal cells in ex vivo porcine discs (Purmessur et al., 2013c). Animal models have been developed to investigate the effects of different types of compression on disc health. Compression can be applied to the disc in two manners: static or cyclic. Static chronic compression has been applied to rat tails by means of bending (asymmetrical compression) or with an Ilizarov-type apparatus (Iatridis et al., 1999). The effect of forceful bending was introduced in 1957 and was one of the first mechanical models of DDD (Lindblom, 1957). Lindblom fixed rat tails in bent shapes and, thus, induced degeneration of the AF on the concave side, with alteration of connective tissue and decreased cellularity correlated with the duration of the procedure. The same type of procedure was assessed in mice by applying forceful bending to the IVD between the coccygeal vertebrae for 1 week using an external device (Court et al., 2001). Once again, DDD was objectivised by excessive mortality of cells in the AF and decreased aggrecan and type II collagen gene expression in the concave side. Symmetric compression induces a decrease in IVD height associated with a decrease in axial compliance and angular laxity (Iatridis et al., 1999). A substantial decrease in total PG content is also observed in the caudal IVD of rats subjected to static compression, in association with disc thinning (Ching et al., 2003; Ching et al., 2004). Decreased notochordal cells, increased mechanical stress on the spine, resulting in disc abnormalities and subsequent degeneration.

Fig. 2. T2-weighted sagittal MRI of thoracolumbar spine of a dog with kyphoscoliosis. In case of kyphoscoliosis, the disc adjacent to the malformation exhibits early degeneration, as observed with a decreased MRI T2 signal (blue star), which is adjacent to a malformed vertebra inducing kyphoscoliosis (white arrow).
with increased apoptotic cell death, are also present (Hirata et al., 2014). This irreversible IVD thinning is also detected in rabbits and is associated with decreased cellularity in AF and CEP (Kroeber et al., 2002). These results are confirmed by a gradual increase in MMP-3 in NP cells concomitantly with IVD degeneration, as observed by MRI (Yurube et al., 2010). Downregulation of type II collagen and aggrecan in parallel with upregulation of MMP-3 and -13 is also observed in the bent rat-tail model (Xia et al., 2018). In rabbits, the effects of a 28 d compression can be reversed by distraction (Kroeber et al., 2005).

Caudal discs have also been subjected to a cyclical compression by means of a compression device set between two pins inserted in the caudal vertebral bodies of rats. The device delivers compressive stress at different frequencies and with different magnitudes and amplitudes (Ching et al., 2003; Ching et al., 2004). This system induces loss of IVD height with a response depending on the frequency of loading: the greatest effect is observed with static compression and the least effect in the 1.5 Hz group. Moreover, the effects of cyclic loading seem to be extended to adjacent levels. A murine tail model of dynamic loading confirmed the differential effects of dynamic loading depending on frequency and stress (Walsh and Lotz, 2004).

Mechanical models – instability and immobilisation

Instability models induce slow and progressive disc degeneration by allowing excessive movement of the spinal segment by means of surgical resection of tissues that maintain the rigidity of the spinal column (facet joints or spinous processes) or by stiffening the adjacent level through a fusion procedure. Overstimulation of spinal muscles and torsional injury have also been investigated. All these methods have the advantage of keeping the IVD intact and being close to the clinical condition. The degeneration initiates within 3-12 months, depending on the mechanism of instability and species. Many models have been investigated and are discussed below.

In a mouse model of surgical resection of spinous processes and associated ligaments as well as detachment of paravertebral muscles in cervical spine, mechanical instability was demonstrated. This, subsequently, induces accelerated IVD degeneration with decreased disc height, as confirmed by annular degradation with fibroblastic cell proliferation until fissures form and disruption occurs — even resulting in herniation and osteophytosis (Miyamoto et al., 1991). Instability can also be achieved by facetectomy, *i.e.* unilateral or bilateral removal of a caudal articular process (facet) of a vertebra. In rabbits, facetectomy associated with torsional injury induces progressive DDD over a time course of 3 months. The disc narrowing is concomitant to an increase in phospholipase A2 content, reflecting inflammation, which is not observed with facetectomy alone (Hadjipavlou et al., 1998). Facetectomy alone generates progressive IVD narrowing in the lumbar spine of immature white rabbits (Sullivan et al., 1971). The lesions observed are thinning of the posterior AF and disorganisation of the NP after 6 months. Instability seems to be less efficient in triggering DDD in the lumbar spine than in the cervical spine. Indeed, cervical spine curvature and musculature can increase the induced destabilisation. Nevertheless, in a mouse model of surgically induced instability (Oichi et al., 2018), lumbar DDD has been evidenced as early as 2 weeks after surgery, with thinning of the IVD followed by osteophytosis, degeneration of NP and disorganisation of the AF within 12 weeks after resection of facet joints and supra- and interspinous ligaments.

Animal models using immobilisation of spinal segments have also been developed. Thus, vertebral fusion (arthrodesis) allows immobilisation of one spinal segment and causes stress at the adjacent sections. Immobilisation-induced DDD has also been achieved by means of pedicle screw and rod implantation in models as large as sheep (Wang et al., 2018). In rabbits, lumbar fusion induces gradual DDD in adjacent treated IVDs and disc space narrowing, as evidenced by radiography (Phillips et al., 2002). The authors described a progressive replacement of notochordal cells in the NP and proliferation of NP cells, a decrease in PG fibre length and fibrosis of the disc. The lesions are observed within 3 months following spine fusion. Osteophytosis and endplate sclerosis are also observed. IVD degeneration induced by fusion has also been studied in dogs (Bushell et al., 1978; Taylor et al., 1976). In immature beagles, fusion induced a decrease in collagen content in fused and adjacent IVDs, but it failed to produce DDD in adult greyhounds; the latter typically present notochordal cells in the healthy IVD.

Structural models

Structural models trigger DDD impairing the structural integrity of the IVD through a direct injury or a chemical alteration of the IVD or its adjacent structures such as the endplates. All these models require direct physical access to the IVD to reach AF, NP or endplates. Therefore, different ways to approach the IVD have been investigated and the surgical approaches may differ depending on the species-dependent anatomy. Initial approaches included a broad exposure of the lumbar spine with a ventral approach through a large laparotomy (Boxberger et al., 2008; Sobajima et al., 2005) or by lumботомy with a retroperitoneal approach. The access is easy and facilitates the disc approach and visibility but the procedure requires surgical competence and, because of these large surgical wounds, high morbidity is present. The newest approaches are definitely less invasive and fluoroscopy has allowed the development of percutaneous methods (Kim et al., 2015; Prologo et al., 2012; Zhou et al., 2013a). One of them is based on a percutaneous transannular access to the NP to trigger DDD through a simple puncture, aspiration,
enzyme injection or laser. This technique is painless and the least invasive. Moreover, the animal recovers quickly after surgery. Yet, it is not suitable for targeting the more caudal lumbar levels because the iliac bone covers the posterolateral part of the spine and hampers access to the disc space. More recently, a transpedicular approach has been described to target the NP without injuring the AF by means of a wire traveling in a vertebra through one of its pedicles and its caudal CEP (Vadâla et al., 2013). This is inspired by methods used classically in spinal surgery for osteosynthesis (Ringel et al., 2006) and cementoplasty (Galibert et al., 1987; Taylor et al., 2007) and has to be performed by well-trained surgeons. The size of the surgical approach rules out its use on the smallest animal species, reserving it for the largest, such as sheep and pigs (Le Fournier et al., 2017; Vadâla et al., 2018). This technique can also be used to explore IVD degeneration or as a route to inject treatments into the NP. The route through the vertebra and the endplate has to be filled after the procedure to limit the risk of leaking of the intradiscally injected materials or cells. This technique is attractive when inducing degeneration without damaging the AF. Nevertheless, it remains highly invasive and the risk of leakage of the regenerative treatment will probably limit its further use.

Enzymatic models: chemonucleolysis

Enzymatic nuclear alteration is defined as chemonucleolysis. It was initially considered as a clinical treatment for sciatica secondary to disc protrusion (Chicheportiche et al., 1997). Chymopapain was the first enzyme used in 1964. It reduces disc volume by proteolytic digestion. Various enzymes have been tested in numerous models, including large ones such as dogs and pigs, in order to reproduce the selective degradation of PGs observed in disc degeneration. The enzyme is injected into the NP where it triggers dose-dependent degeneration. In the evaluation of regenerative strategies of the IVD, the most commonly used enzymes are chondroitinase ABC and chymopapain, which cause GAG degradation. Hyaluronidase is also regularly used (Antoniou et al., 2006; Fusellier et al., 2016). Conversely, collagenase damages collagen fibres (Antoniou et al., 2006; Bromley et al., 1980; Growney et al., 2014; Spencer et al., 1985; Stern and Coulson, 1976; Zook and Krobine, 1986). Trypsin combines the two effects (Mwale et al., 2008; Roberts et al., 2008).

The effects of chymopapain have been investigated in vivo in rabbits (Gullbrand et al., 2016; Kiester et al., 1994), dogs (Atilola et al., 1988; Bradford et al., 1983; Kudo et al., 1993; Lü et al., 1997; Melrose et al., 1996; Spencer et al., 1985; Wakano et al., 1983) and monkeys (Zook and Krobine, 1986) and ex vivo in bovine disc explants (Chan et al., 2013; Roberts et al., 2008). Its proteolytic activity causes an ex vivo degeneration in the bovine disc explant model (Chan et al., 2013). In vivo, it causes a quick decrease in PG content associated with a decrease in disc height and deficiency in degenerative disc disease. The effect is due to a selective cleavage of the non-collagenous protein connections of PGs. It is dose-dependent and at low dosage, a restoration of PG content to near normal is observed over time; high doses cause more extensive and irreversible damage with AF disruption (Kiester et al., 1994). Limited specificity of chymopapain is its principal drawback, acting on multiple ECM components, differently from the more specific chondroitinase ABC, hyaluronidase and collagenase (Lotz et al., 2004; Sasaki et al., 2001; Yamada et al., 2001). Its use is currently uncommon.

Chondroitinase ABC induces dose-dependent DDD in animal models such as rats (Boxberger et al., 2008; Norcross et al., 2003), rabbits (Henderson et al., 1991), sheep (Sasaki et al., 2001), goats (Hoogendoorn et al., 2007), monkeys (Sugimura et al., 1996) and dogs (Fry et al., 1991). Its action is mediated by a specific degradation of the chondroitin and dermatan sulphate side chains of the PGs. After intradiscal injection of chondroitinase ABC in the IVD, mild DDD can be observed by progressive disc space narrowing, decrease in intradiscal pressure (Fry et al., 1991; Gullbrand et al., 2017; Henderson et al., 1991; Sasaki et al., 2001), nuclear cellularity and PG content (Fry et al., 1991; Norcross et al., 2003) and biomechanical impairment, with an increased spine segment range of motion (Boxberger et al., 2008; Gullbrand et al., 2017). An increase in Pfirrmann grading as seen by MRI, indicative of degeneration, has also been reported (Gullbrand et al., 2017).

Hyaluronidase, trypsin and collagenase are significantly less often used than chondroitinase in animal models of DDD. Although enzymatic methods seem appealing because they induce reproducible, gradual, measurable and controllable DDD, some of these enzymes are not spontaneously present in mammals and, thus, cannot induce disc damage mimicking the natural degenerative cascade.

Physical models

Physical models include numerous surgical injuries that can be induced on the IVD, such as incision of the AF, aspiration of the NP or endplate perforation. They are intended to mimic degeneration observed in humans because AF and CEP lesions are believed to play a pivotal role in disc degeneration. The lesion itself can be extensive or, on the contrary, minimal and trigger a cascade of cellular events that gradually lead to DDD, closer to the spontaneous phenomenon observed in human disc disease.

Physical models – endplate injury

Since the IVD is a bulky avascular structure, its nutrient supply diffuses up to the core of the disc axially from the CEP and radially through the AF (Travascio et al., 2010; Urban et al., 2004), with a greater contribution of the CEP route (Giers et al., 2017; Naresh-Babu et al., 2016). The diffusion through the AF is anisotropic and affected by compression. Diffusion decreases with ageing (Ibrahim et al., 2013).
CEP injuries have been identified as a possible trigger of DDD, mediated by limitation of nutrition and endplate sclerosis in humans (Benneker et al., 2005; Bernick and Cailliet, 1982). CEP lesions can be mechanical (physical) or ischemic (i.e. induced by reduction of blood flow) and could mimic the degeneration process observed in human disease, with impaired subchondral bone vascularisation associated with slow degeneration, decreased cellularity and GAG content in NP, disorganised annular fibrocartilage lamellae and disc narrowing. These models have the advantage of keeping the AF intact. In a porcine model with perforations of the CEP made using a drill bit (Holm et al., 2004) or a Kirschner wire (Cinotti et al., 2005; Vadala et al., 2018), late DDD was induced and characterised by NP dehydration, a decrease in cell density in the outer AF, a decrease in PG as well as disorganisation of the nuclear gel-like structure and annular structure. Intradiscal pressure in the NP was minimised and the MRI signal decreased on T2-weighted images. The lesions progressed for 3-7 months and were related to the extent of CEP injury (Cinotti et al., 2005). Blockade of the blood flow through the CEP can be achieved by injection of pinyangynmycin or bleomycin in the vertebral subchondral bone. In rabbits, this procedure causes slowly progressive DDD, as confirmed by a decrease in IVD height and T2 signal within 3 months (Wei et al., 2015). This model is also described in rhesus macaque (Wei et al., 2014; Zhou et al., 2013b).

In contrast, in a canine model, such ischemic lesions and subsequent nutrition impairment, produced by injection of bone cement adjacent to CEPs, fail to induce degenerative changes up to 70 weeks (Hutton et al., 2004). This could be related to the differences in CEP thickness among species. Indeed, distance between the core of the disc and the nearest blood supply can differ greatly, as can CEP porosity (Guehring et al., 2009).

Physical models – annulotomy

Annulotomy is a surgical procedure consisting of laceration of the AF, a technique that was described for the first time in 1932 (Keyes and Compere, 1932). The lesions can be induced either ventrally or dorsolaterally to the disc and the more extensive lesions require a large surgical approach, making the procedure relatively invasive, especially in small animal models. Multiple lesions ranging from simple annular puncture with a needle (Hsieh et al., 2009; Issy et al., 2013; Kim et al., 2005; Martin et al., 2013; Masuda et al., 2004; Michalek et al., 2010; Sobajima et al., 2005; Tian et al., 2018) to extensive incision of the AF with a scalpel or drill bit (Kääpä et al., 1994; Lipson and Muir, 1980; Lipson and Muir, 1981; Melrose et al., 2002; Olsewski et al., 1996; Osti et al., 1990; Rousseau et al., 2007; Schollum et al., 2010; Zhang et al., 2011) have been described. The annular puncture can easily be guided percutaneously by fluoroscopy or CT for rabbits (Chai et al., 2016; Kim et al., 2005) or larger animals and is less invasive (Zhou et al., 2013b). The method has been largely studied in rabbits (Kim et al., 2015; Luo et al., 2018; Masuda et al., 2004; Sobajima et al., 2005) but has also been investigated in mice (Martin et al., 2013), rats (Hsieh et al., 2009; Issy et al., 2013; Rousseau et al., 2007), dogs (Chen et al., 2015), sheep (Freeman et al., 2016), goats (Zhang et al., 2011) and pigs (Kääpä et al., 1994; Pfeiffer et al., 1994). In rabbits, annular needle puncture has become popular because it is an easy and reproducible way to induce DDD. Nevertheless, the results depend on the extent of the lesion created: the larger the lesion the more severe the disc damage is and the earlier the degeneration takes place. Nevertheless, it is difficult to compare the efficacy and reproducibility of these different methods as the techniques described vary in width and depth, from partial-thickness annular injury to full-thickness annular stab with NP involvement. Therefore, a superficial incision or puncture leads to spontaneous healing of the AF with slow degeneration over weeks or months (Lipson and Muir, 1981; Osti et al., 1990; Sobajima et al., 2005; Zhang et al., 2011). More extensive or deep lesions induce a very rapid degeneration with an increase in disc herniation or avulsion risk. In rabbit lumbar discs, blade laceration causes a quick narrowing of the disc and a blurry distinction between AF and NP as early as 1 week. The NP is replaced by a fibrotic tissue in 1 month. In sheep, an annular injury induces a decrease in disc height correlated with an increase in MRI Pfirrmann scoring and histological injury scoring (Freeman et al., 2016). The outer AF can heal after partial-thickness ventral annulotomy 5 mm deep and the DDD progresses from outside to inside with centripetal lesions over several months (Osti et al., 1990). The effects of annular lesions can be boosted by adjacent spinal fusion and subsequently increased mechanical stress. In pigs, annulotomy 13 mm deep leads to fibrous degeneration of the NP and partial destruction of the lamellar structure of the AF (Kääpä et al., 1994).

In needle puncture models, the link between the diameter of the needle and the disc size has been evidenced, with a direct influence of gauge size on the extent of degeneration, with the larger needle inducing more severe lesions (Singh et al., 2005). In mice, a puncture induces a significant DDD when the needle diameter/IVD height ratio exceeds 0.4. The rabbit lumbar disc puncture model has been extensively studied. The degeneration induced is reproducible and can be quantitatively assessed in vivo by radiographs and MRI (Sobajima et al., 2005). The gross lesions are associated with replacement of notochordal cells by chondrocytic cells in the NP. The needle gauge must be selected carefully, considering that a 21-G needle does not induce measurable degeneration at 8 weeks (Masuda et al., 2004). In contrast, when 16-G and 18-G needles are used, the decrease in disc height is slowly progressive and becomes apparent 2 weeks after injury (Masuda et al., 2004). Contrary to annulotomy or nucleotomy, needle puncture produces very reproducible lesions.
inducing gradual and quite fast DDD (between 2 and 9 weeks in rabbits).

Physical models – nuclear lesions

Direct injuries to the NP are variable and include nucleotomy (aspiration of NP tissue) and heating or cryoinjury. Nucleotomy is the partial or complete aspiration of NP tissue commonly used for surgery of disc herniation and also used as an in vivo animal model of disc degeneration. By means of nuclear aspiration, the free space created within the NP is large enough to inject large volumes of cells with or without biomaterials. This technique is particularly useful in the context of assessing new cell-based therapeutic strategies (Acosta et al., 2011; Ganey et al., 2009; Sakai et al., 2005; Serigano et al., 2010; Vadala et al., 2015). The procedure consists of an NP aspiration with a 10 mL syringe (Kim et al., 2015) through the AF (transannular approach) with an anterolateral approach guided fluoroscopically. This route triggers annular lesions that can alone be responsible for DDD and remains easy to perform and minimally invasive. On the contrary, the transpedicular approach allows preserving the AF integrity with the introduction of a wire in the caudal vertebra through the pedicle and the inferior endplate until it reaches the NP (Russo et al., 2016; Vadala et al., 2013). Partial nucleotomy induces progressive DDD, as confirmed by MRI and histological analysis in ovine lumbar IVD (Guder et al., 2009), Goettingen minipigs (Omlor et al., 2009) and dogs (Bach et al., 2018). In minipigs, DDD is also highlighted by a decrease in notochordal cell density and NP aggrecan content (Omlor et al., 2009). Partial nucleotomy indeed induces DDD, size, depth and volume of the lesions are poorly reproducible. Nucleotomy can be complete (Vadala et al., 2015) or partial (Ganey et al., 2009; Guder et al., 2009; Omlor et al., 2009; Sakai et al., 2005; Serigano et al., 2010). Moreover, the amount of aspired NP is often not documented and quite difficult to control precisely (Kim et al., 2005).

Laser is also a method derived from spinal surgery that has long been used for disc ablation (Dickey et al., 1996). In addition, it has been employed to perform experimental nucleotomy (Sato et al., 2003). A diode laser can be used to induce disc degeneration in rabbits (Lucas et al., 2012). The lesions are demonstrated by X-ray, with a thinning of disc space, and on MRI, with a decrease in the T2-weighted signal. Degeneration of the NP ECM is confirmed by Boos scoring. This degeneration induced by laser is more progressive than aspiration-induced IVD degeneration (Lucas et al., 2012) and chemonucleolysis (Fusellier et al., 2016). Cryoinjury is based on cold-induced lesions applied with a cryoprobe. It has been described in a pig model and with a transpedicular approach, without AF lesions (Flouzat-Lachaniette et al., 2018). Cryoinjury induces more severe lesions than AF lesions, as attested by more disc space narrowing, dehydration and higher histological scores (Flouzat-Lachaniette et al., 2018).

How should the pertinent DDD model be selected? Strengths and limitations of the different models

Choosing the most appropriate model is fundamental, because it will partly determine the relevance and quality of the results obtained. The model should reproduce the degenerative process that takes place in human DDD as faithfully as possible. Even more so, the model should recapitulate the cascade of events that relate to the research question posed.

Choice of the model according to the research question

Despite their limitations, animal models remain essential to improve the understanding of the disc physiopathology and to develop new therapies. The model must be selected primarily based on the question that needs to be answered. Indeed, the type of scientific study will guide the choice of all the model’s criteria, such as persistence of notochordal cells, size of the IVD or mechanical properties.

Genetic studies

Numerous genes have been associated with DDD (Munir et al., 2018). Ideally, the correlation between DDD and specific genes should be studied in human patients (Paassilta et al., 2001). Indeed, these studies are not invasive, are cost-effective and can easily be conducted in large cohorts (Rajasekaran et al., 2016). Nevertheless, spontaneous degeneration in humans is multifactorial. Therefore, the influence of specific genes on DDD is difficult to evaluate in large human populations. Transgenic animal models could make it possible to identify the main genes implicated in DDD. This is the objective of knockout models, such as Col2a1 or GDF8 knock-out mice (Hamrick et al., 2003; Sahlman et al., 2001). The main problem raised by these models is that they are developed for practical reasons in short-lifetime animals. Unfortunately, these species have notochordal cells throughout their life, which can influence DDD.

Pathophysiology studies

Understanding the mechanism that leads to human DDD requires a model that is as close as possible to spontaneous conditions in humans. Biomechanical factors are known to play a major role in triggering DDD and the significant roles of notochordal cell differentiation and apoptosis (Erwin et al., 2011; Purmessur et al., 2013c) as well as abnormal inflammatory factor secretion have also been clearly identified (Johnson et al., 2015; Phillips et al., 2015; Purmessur et al., 2013b; Risbud and Shapiro, 2014). This major role of notochordal cells in DDD theoretically eliminates the use of species with persistence of notochordal cells in adulthood or with different enzymatic complexes, such as rodents and pigs. Nevertheless, even in these species, notochordal cells can decline in response to adequate initiating factors, including load (Purmessur et al., 2013c),
osmolality (Spillekom et al., 2014) and oxygen levels (Omlor et al., 2014), making them relevant. The effect of mechanical stress can be explored by mechanical models, but the age of the animals should be taken into account. Indeed, isolated cells from old subjects are more susceptible to degenerative changes than cells of younger subjects when subjected to dynamic loading, as demonstrated in pigs (Cho et al., 2011). The fact that most models rely on a triggering factor that is far from what is observed in spontaneous DDD is a major drawback. Indeed, annular puncture (Luo et al., 2018), enzymatic injury (Fusellier et al., 2016) and nucleotomy (Acosta et al., 2011; Kim et al., 2015) do not reproduce the pathological process. Moreover, most of the models present an acute onset of DDD, whereas DDD is a slowly progressive disease. In this context, according to the authors, two types of models seem the most appropriate to study physiology and senescence of the IVD: spontaneous models (Bergknut et al., 2011; Choi et al., 2018; Nisolle et al., 2016; Ohnishi et al., 2018) and mechanical models (dynamic or static loading or exercise) (Krober et al., 2002; Puustjärvi et al., 1994; Saamanen et al., 1993), in absence of notochordal cells’ persistence. Since the less invasive procedures induce a slower onset of degeneration, these models are time-consuming and, therefore, expensive. Of course, the best model remains the human degenerated disc itself, surgically removed, when available. In this context, an interesting model is the veterinary degenerated disc patient. Canine patients present with several clinical entities that relate to disc degeneration with herniation or protrusion with clear breed disposition, including cervical spondylomyelopathy, acute thoracolumbar disc herniation and LBP. Canine patients suffering clinical DDD are often represented in veterinary practice and owners are looking for new treatments. Owners are prone to take part in clinical trials studying the effect of novel and safe treatments as compared to the standard-of-care. Redundant surgical material can be employed for further research (including the herniated disc) and follow up can be conducted with similar read out parameters to humans, including questionnaires and longitudinal imaging.

Therapeutic studies – gene therapy
Performing gene therapy on discs during ex vivo culture is not relevant. Indeed, discs are largely avascular with low oxygen tension and low pH and this could alter the characteristics of the genetically modified cells, which may not survive after reimplantation in the complex environment of the IVD. However, direct in vivo gene transfer could be more efficient. Since gene transfer modifies the expression of the target cells and in the meantime can affect the metabolism of adjacent cells, the cellular composition of the treated disc is of great importance. However, testing gene therapy in discs with notochordal cells has little relevance because it cannot mimic the behaviour of cells present in the IVD at the time of the DDD.

Therapeutic studies – surgical therapies
Surgical treatments can be tested in all varieties of models. The animal’s size has to be taken into account because some implants can be too large to be implanted. Larger animals are often preferred, even if biological disc implants have been evaluated in animals as small as rats (Gebhard et al., 2010). Moreover, the anatomy of the model has to be close to the human anatomy, especially when evaluating surgical devices. Generally, implantable material devices such as interspinous devices or pedicle-screw-based stabilisation are tested in large species.

Therapeutic studies – tissue engineering and cell-based therapies
Tissue engineering for DDD aims at replacing the native NP by a cell-loaded natural or synthetic construct that needs to be tested successfully in animal models before proceeding to human studies. Biomaterials must restore biomechanical function of the NP and support reparative cells (exogenous or endogenous). As the biomaterials used have to replace the NP, they are mostly implanted after mechanical nucleotomy, which creates a cavity inside the NP. Nucleotomy can be performed after enzymatic degradation of the NP, but a high level of enzymes could result in decreased viability around the defect created (Vadalà et al., 2015). Therefore, enzymatic models should be avoided if cells are associated with biomaterials. Moreover, enzymes could adversely affect stem cells of peripheral niches. Nucleotomy can be performed after transpedicular approach keeps the AF intact and must be preferred, because a larger amount of material can be injected without leakage from the AF.

When nucleotomy is not performed, injectable materials can be added to the degenerated NP, with the aim of keeping local cells and restoring their function. In this context, the environment in which the regenerative cells have to be implanted needs to be close to the environment of the human IVD to appropriately transpose the results obtained. Therefore, the model chosen must not present persistent notochordal cells. Indeed, it is important to ensure that the resident notochordal cells are not responsible for the regenerative effects instead of, or in combination with, the transplanted cells. Also, the disc of the model must be thick to reproduce the nutritional challenge of the human disc (low glucose supply, hypoxia, acidic and hypertonic environment). As such, larger animals are preferable to rodents with thin discs and persistence of notochordal cells.

Therapeutic studies – endogenous-progenitor- and growth-factor-based therapy
As an alternative to supplementation with exogenous cells, endogenous progenitors and growth factor strategies focus on activating endogenous progenitors to trigger self-repair by resident stem cells (Ma et al., 2018) or to restore the balance of anabolic and
catabolic activities in the IVD. Enzymatic models of DDD must be avoided to test these therapies because they can affect the viability of resident cells (either nucleopulpocytes or cells from niches). In addition, notochordal-cell-persistent models cannot reproduce the response of the human IVD to these therapies. Therefore, for these therapies, spontaneous models are more relevant.

Outcomes measures
Measures that are performed to evaluate the evolution of degeneration or to assess the efficacy of a novel treatment being developed influence the choice of the model, as outcome measures may be technically limited by the size of the model and species-specific differences, all challenging the 3Rs rules (replacement, reduction, refinement).

Histological, cellular and molecular changes of the disc during the degeneration process can only be assessed post mortem (Keorochana et al., 2010). The need for addressing the temporal changes of these outcome parameters results in increased numbers of animals and, hence, in increased global cost of the studies. Important tissue changes can be evidenced with conventional histological stains (haematoxylin and eosin, alcian blue-picrosirius red, Masson’s trichrome, etc.), which can be used across species (Detiger et al., 2014; Imanishi et al., 2019; Faul et al., 2018). However, distinction of cell populations in the NP may require specific biomarkers and specialised techniques to identify them (including immunohistochemistry, RTqPCR, proteomics, etc.) that may or may not be available in the intended animal model (de Campos et al., 2016; Keorochana et al., 2010; Roughley and Mort, 2012). As such, outlining the primary and secondary read-out parameters and taking them into account when choosing the appropriate animal model is recommended.

Follow-up, during several months, of the in vivo IVD changes can be performed using imaging procedures. These non-destructive imaging procedures allow to drastically reduce the number of sacrificed animals. Indeed, each animal can be used as its own control, thus improving the validity of statistical results. Among imaging procedures dedicated to IVD follow-up, X-ray, CT and MRI are particularly used. X-ray imaging can be applied to all animal models (Chai et al., 2016; Fusellier et al., 2016; Han et al., 2008; Lai et al., 2007; Lucas et al., 2012; Takegami et al., 2005) as its resolution is high. However, interest in this technique is limited as it only allows the detection of major abnormalities, including changes in disc height and osteophyte formation. CT and MRI can also be performed on all species but devices must be adapted to the size of the model as resolution varies greatly. CT allows measurement of IVD height and morphological description of vertebrae, CEP or lesions of bony structures (Colloca et al., 2012; Vadalà et al., 2013). Nevertheless, its use is limited when discrimination between AF and NP is needed, even if contrast-enhancing techniques are deployed. CT remains of interest, notably for CT-guided surgical approach (Mackenzie et al., 2014; Ohnishi et al., 2016; Shi et al., 2016; Wei et al., 2015). MRI remains undoubtedly the best imaging tool to describe IVD morphology and allow evaluation of the DDD. A strong magnetic field is required to image small species such as mice or rats (Ohnishi et al., 2016). The value of MRI is the excellent correlation it provides between biochemical and structural changes as well as improvement in the IVD MRI signal. Moreover, semi-quantitative evaluation (Pfirrmann 5-level grading) and more recent quantitative estimation (T2 relaxation time, T1ρ relaxation time, T2* and apparent diffusion coefficient) of disc degeneration are possible. MRS is also used in vivo to assess PG and collagen content in IVD (Zuo et al., 2013).

Behavioural assays could also improve our understanding of clinical DDD, by evaluating several parameters such as pain, quality of life or disability such as locomotor outcomes after degeneration. Indeed, pain is often the first symptom of DDD in humans (Park et al., 2019) and in dogs, who also suffer clinical DDD with distinct clinical representation, depending on the breed (i.e. CD vs. NCD). Nevertheless, these read-out parameters require thorough observation of animal behaviour and adapted and specific pain scales adjusted to species in order to allow accurate and objective evaluation. These scales are well described in DDD rodent models (Lai et al., 2015; Mosley et al., 2017). In dogs, numerous techniques have been developed such as quality of life questionnaires, quantitative sensory testing, locomotor scoring systems and kinematic gait assessments (reviewed by Thompson et al., 2018, specifically for the clinical representation of CD dogs). Furthermore, pain scales are available and have been employed in canine patients suffering DDD, including the modified Canine Brief Pain Inventory (Brown et al., 2009), which was further modified and adapted for the chronic back pain canine patients (Suwankong et al., 2007). By contrast, to the authors knowledge, specific pain scales usable for large mammals do not exist. In this context, most veterinary canine patients that suffer clinical entities related to DDD can already benefit from validated objective grids to assess pain and quality of life. Moreover, they can be carefully observed by owners trained for long time.

Choice of IVD degeneration model
The choice of IVD degeneration model (spontaneous or induced) should follow several logical points, as discussed below. Some models can be used to answer multiple questions and studies can be performed in a block design, where more than one IVD is degenerated. Typically, these would involve 3 to 5 levels within the lumbar spine. These multi-level studies address ethical concerns as they reduce animal numbers employed and decrease experiments’ cost. This is certainly true for large animal models.
where multiple read-out parameters can be deduced from each single disc. However, how the different IVDs in multiple level studies may affect each other has yet to be studied. It is plausible that, in short-term studies, each IVD minimally influences the other discs, certainly considering intradiscal applications in moderate degeneration models. Nonetheless, paracrine effects of the interplay between disc and CEP cannot be excluded. As such, when choosing the appropriate model, the 3Rs need to be strongly implemented in the study design and compromises may have to be considered. A multi-level study may assist in screening among treatment strategies. Thereafter, further fine-tuning needs to be conducted for the separate primary read-out parameters in dedicated animal models.

Spontaneous models

Intuitively, spontaneous models of DDD seem particularly relevant because of their similarity to human degenerative disease. Moreover, they have been described in a wide variety of species from sand rats (Gruber et al., 2002; Gruber et al., 2006; Moskowitz et al., 1990; Pokharna et al., 1994; Tapp et al., 2008; Ziv et al., 1992) to non-human primates (Lauerman et al., 1992; Nuckley et al., 2008; Platenberg et al., 2001), as well as rabbits (Clouet et al., 2011; Leung et al., 2008), dogs (Bergknut et al., 2011; Bergknut et al., 2012; Brisson, 2010; Cherrone et al., 2004; Griffin et al., 2009; Priester, 1976) and sheep (Nisolle et al., 2016). Consequently, these models, which include species of different sizes, are compatible with a broad range of experimental protocols, notably those designed to evaluate surgical procedures related to regenerative strategies with injections into the NP. Genetic spontaneous models are likely more difficult to extrapolate to humans because of considerable species differences in the genes involved in DDD pathological processes.

Although of interest, these spontaneous models have limitations. Indeed, in animals as in humans, the progression of DDD is often long and unpredictable, with inconsistent onset. Moreover, this significantly increases the cost of the model because the number of animals required is larger and they have to be housed for a long time. Interestingly, client-owned dogs also suffer DDD that is very similar to clinical entities seen in humans at the level of clinical signs, diagnostics, therapeutic approaches, histology and biochemistry. As such, the inclusion of these dogs in veterinary clinical trials could be a valuable opportunity (Bach et al., 2014; Thompson et al., 2018).

Experimental models – mechanical models

Among mechanical models, those using postural changes, such as forced bipedalism, have to be ruled out given that they are no longer ethically acceptable because of the significant behavioural stress they induce. Instability and bending models induce a progressive DDD without any lesion of the AF and NP and they are, thus, presumed to closely mimic human disc disease (Hadjipavlou et al., 1998, Oichi et al., 2018, Court et al., 2001). Moreover, they can be applied to large animals. Therefore, they are a valuable in vivo model for exploration of the influence of mechanical stress on the IVD. Nevertheless, several drawbacks should be stressed: surgical procedures used to trigger mechanical stress (fusion, torsion, immobilisation) are extremely invasive and painful. The techniques require trained surgeons, expensive materials and fine-tuned analgesia to comply with the 3R principles. The progression of the degeneration is quite long and the onset is unpredictable and unreliable; therefore, the number of animals undergoing surgery must be increased. They remain ethically questionable regarding the pain level they induce even if pain management is systematically undertaken.

Experimental models – structural models

Among structural models, chemical models are well known to induce an imbalance in NP ECM homeostasis, notably to PG content, thereby inducing a reproducible and adjustable DDD. These models are easily transferable to all species and are cost-effective. Nevertheless, some limitations must be highlighted. First, chemonucleolysis causes intradiscal persistence of proteolytic enzymes and degradation factors with residual activities (Oegema et al., 1992). All these factors are not free of cytotoxicity and could, thus, affect survival and behaviour of IVD resident cells or injected cells in the context of regenerative strategies. Secondly, the degeneration induced by enzyme injection is fast and does not completely reproduce the slow and naturally occurring DDD.

Interestingly, physical models have been developed in various and numerous species, even in the largest ones. They are relevant because AF lesions are believed to play a crucial role in triggering human DDD. Needle puncture is a reliable method with very reproducible lesions inducing gradual and quite fast DDD. This is not the case of anulotomy and nucleotomy, where lesions are less reproducible. Moreover, although AF lesions (incision or puncture) induce a degeneration quite close to spontaneous processes, nuclear aspiration is far from natural DDD and is a closer model of disc avulsion (separation), with the removal of cells and ECM from NP. Nucleotomy cannot serve as a pathogenic model of DDD. Nevertheless, it is widely used in experiments assessing regenerative therapeutics.

A final concern about the use of annular lesions is the possible leakage of injected cells or biomaterials through the AF aperture when the needle gauge is larger than 22-G (Wang et al., 2007a). Keeping the AF intact using the transpedicular approach, for example, could be a useful alternative but the bone passage will need to be plugged to avoid backflow of NP tissue or injected substitute (Vadalà et al., 2013). Nonetheless, the leakage observed in these models also simulated the possible implications of regenerative treatment strategies applied to human patients where the
AF is not intact. As such, regenerative strategies have evolved to develop biomaterials that have the propensity to be thermo-reversible and/or interact and adhere to the matrix component of the NP and, as such, prevent leakage of the injected therapeutic material (Schutgens et al., 2015).

Choice of animal species
The choice of the species should rationally be based on the presence of notochordal cells as well as size and anatomy of the IVD. Most particularly, the persistence of notochordal cells in the NP with ageing has to be taken into account because they appear to interact with surrounding cells, influencing their behaviour (Aguilar et al., 1999). They have also been shown, in numerous studies, to exert regenerative and anti-inflammatory effects (reviewed by Bach et al., 2014; Purmessur et al., 2013a; Rodrigues-Pinto et al., 2014). The interaction can be effective on native NP cells (nucleopulpocytes) but also on exogenous cells used during cell therapy treatment. Moreover, considering that notochordal cells exhibit progenitor cell characteristics (Sakai et al., 2012), their presence could provide a bias in the interpretation of experimental results. There are examples where a regenerative treatment strategy is effective in a rabbit model, while it fails to show beneficial effects in a large animal model that lacks notochordal cells or even in human clinical trials (Sakai et al., 2003). Therefore, the presence of notochordal cells in the selected animal model could be of interest for fundamental experiments exploring cellular behaviour during human disc maturation and the processes driving the disappearance of notochordal cells and their substitution by nucleopulpocytes with reduced regenerative capacities. Species lacking notochordal cells in adulthood are of greater relevance for (i) analysing IVD degenerative processes, especially spontaneous models of DDD with disease progression close to what is observed in humans, and (ii) testing the efficacy of regenerative biotherapies (cell-based, growth factors, biomaterials).

IVD size and height are also simple traits of the model, but they are crucial characteristics that have to be taken into account in the choice of the appropriate animal model. First, small discs preclude the use of some surgical procedures and require size adaptation of surgical ancillaries, which is extremely costly. Moreover, in the context of regenerative strategies, the volume of cells and/or biomaterials intradiscally injected is dependent on the size of the NP. For example, certain biomaterials may encounter technical challenges in terms of their injectability through small-gauge needles and small volumes, which are typically in the range of 1-2 µL for mice and 10-20 µL for rats. Nonetheless, small animal models are cost-effective and remain valuable for fundamental studies on the pathogenesis of DDD and screening of bioactives prior to translation towards large animal models. Importantly, the human disc is a large avascular structure and diffusion of nutrients takes place primarily through the endplates. As such, disc height directly affects the nutritional environment (O’Connell et al., 2007) and is, therefore, an important cofactor. Indeed, even though discs of rodents mimic the biomechanical properties observed in human discs, their small size limits the nutritional challenge observed in human discs. In terms of disc size, sheep, goats, pigs and cattle are considered the most appropriate and affordable experimental models. In particular, sheep and goats are widely used as DDD models, especially for spine surgery procedures, despite some anatomical differences (Benneker et al., 2012; Wilke et al., 1997; Zhang et al., 2011).

To resume, in addition to the conditions described, when choosing the appropriate model, one must take into account many criteria:

• size of the animal, housing conditions and cost, as well as surgical procedures and biomechanics of the IVD;
• age of the animals: most often young animals are used because they are less expensive, but they are generally skeletally immature, with persistence of notochordal cells, a microenvironment very different from the one of the degenerated IVD;
• anatomy of spine and IVD;
• mechanical, histological and biochemical properties of the IVD: they should be as close as possible to those of human IVD before and after degeneration;
• time for the onset of degeneration;
• ethical aspects: each protocol has to be approved by an ethics committee;
• model itself: it must be standardised and must induce controllable, reproducible and cost-effective DDD. To reduce costs, time to onset of degeneration should be as short as possible.

Conclusion
Ideally, the optimal in vivo model of DDD should induce a reproducible, measurable and controllable DDD and the degeneration process should mimic the histological and biomechanical features of the human disease. Unfortunately, all these criteria are not always met. First, the animal model chosen must not be species-driven and the selection of a degeneration model must precede the choice of animal species. Therefore, in almost all experiments, a spontaneous degeneration model should be preferred since it is the one that most closely matches human DDD. From this perspective, dogs, sheep and goats deserve attention because their IVD size is closer to that of humans. Ethical aspects and 3R rules have to be carefully considered to prevent the use of historical animal models of DDD (i.e. bipedal models) that did not always fulfil the 3R recommendations, notably regarding pain management in laboratory animals. However, the development of behavioural and pain evaluation provides new tools for
assessing and following both DDD and treatments. Notwithstanding, when employing canine patients in the translational chain, scientist needs to consider that, similarly to humans, canine patients present with multiple clinical entities of disc disease that differ in their therapeutic approach.

References

Editor’s note: All comments/questions by the reviewers were answered by making changes in the text. Hence, there is no Discussion with Reviewers section.

The Scientific Editor responsible for this paper was Mauro Alini.