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Abstract

Low-back pain affects 80 % of the world population at some point in their lives and 40 % of the cases are 
attributed to intervertebral disc (IVD) degeneration. Over the years, many animal models have been developed 
for the evaluation of prevention and treatment strategies for IVD degeneration. Ex vivo organ culture systems 
have also been developed to better control mechanical loading and biochemical conditions, but a reproducible 
ex vivo model that mimics moderate human disc degeneration is lacking. The present study described an 
ex vivo caprine IVD degeneration model that simulated the changes seen in the nucleus pulposus during 
moderate human disc degeneration.
	 Following pre-load under diurnal, simulated physiological loading (SPL) conditions, lumbar caprine 
IVDs were degenerated enzymatically by injecting collagenase and chondroitinase ABC (cABC). After 
digestion, IVDs were subjected to SPL for 7 d. No intervention and phosphate-buffered saline injection were 
used as controls. Disc deformation was continuously monitored to assess disc height recovery. Histology 
and immunohistochemistry were performed to determine the histological grade of degeneration, matrix 
expression, degrading enzyme and catabolic cytokine expression.
	 Injection of collagenase and cABC irreversibly affected the disc mechanical properties. A decrease in 
extracellular matrix components was found, along with a consistent increase in degradative enzymes and 
catabolic proteins [interleukin (IL)-1β, -8 and vascular endothelial growth factor (VEGF)]. The changes 
observed were commensurate with those seen in moderate human-IVD degeneration. This model should 
allow for controlled ex vivo testing of potential biological, cellular and biomaterial treatments of moderate 
human-IVD degeneration.
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AF			  annulus fibrosus
ADAMTS4	 a disintegrin-like and metalloprotease 
			   with thrombospondin type 1 motif 	
			   4
BSA		  bovine serum albumin
cABC		  chondroitinase ABC

DAB		  3,3’-diaminobenzidine
			   tetrahydrochloride
DMEM		 Dulbecco’s modified Eagle medium
FBS		  foetal bovine serum
HEPES		  4-(2-hydroxyethyl)-1-
			   piperazineethanesulphonic acid
IDD		  IVD degeneration
IHC		  immunohistochemistry
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	 Patients suffering chronic LBP due to IDD, who 
have exhausted conservative treatment (e.g. pain 
relief medication and physiotherapy), have no 
remaining options other than surgical intervention, 
of which the most common is spinal fusion (Yajun et 
al., 2010). However, in the last few years, a number 
of biological, cellular or biomaterial strategies have 
been developed that aim at the restoration of the IVD 
and offer promising in vitro results (Anderson et al., 
2005; Schutgens, 2015; Thorpe et al., 2016; Thorpe et 
al., 2017; Tsujimoto et al., 2018). However, translation 
to clinic is currently limited by a lack of models that 
recapitulate the cellular and mechanical changes seen 
in human disc degeneration.
	 Tissue regeneration is essentially a biological 
process that requires a living IVD to evaluate 
safety and efficacy of interventions. Animal models 
have been developed and used for this purpose 
(Hoogendoorn et al., 2007; Wei et al., 2014; Wuertz 
et al., 2009), but animal models have limitations of 
practical, ethical and mechanical nature. In the last 
decade, there has been a strong urge in science to 
limit the use of experimental animals, not only for 
ethical reasons, but also because animal models 
are often moderate to poor models of the human 
condition that is simulated. Reduction, replacement 
and refinement (3Rs) is a policy strongly embraced 
by grant agencies throughout the world. As for 
the validity of the model, quadrupeds have been 
presented as relevant for human spine research (Smit, 
2002), but the diurnal loading regime and biology in 
humans is quite different from what is seen in a sheep 
or goat, making it difficult to predict the benefit of 
a treatment for humans. Finally, the induction of a 
relevant disc degeneration in the IVD of a quadruped 
is far from trivial. Puncture of the AF with a needle 
is often used, but essentially differs from normal 
disc degeneration in humans, which usually starts 
with the loss of proteoglycans and water from the 
NP. To simulate this, Hoogendoorn et al. (2007) 
have used cABC, inducing a reproducible, mild disc 
degeneration in a goat model, similarly to what was 
done by Gullbrand et al. (2017). However, in both 
studies, it took 12 weeks to produce these conditions. 
As such, this is an expensive and unpractical model 
for the evaluation of innovative treatments during 
early stage development.
	 To overcome these issues, LDCSs have been 
proposed and developed (Alini et al. , 2008; 
Gantenbein et al., 2015; Lang et al., 2018; Paul et al., 
2012; Pfannkuche et al., 2019; Rosenzweig et al., 2016; 
Walter et al., 2014; Zhang et al., 2020). As the disc is 
considered to be an immune-privileged site (Sun 
et al., 2020), with inflammatory cell migration only 
seen following annular or endplate rupture during 
end stage degeneration or herniation, studies of 
isolated discs ex vivo can be appropriate models for 
testing potential regenerative strategies. IVDs are 
excised from sheep, cattle or goat spines or tails from 
a slaughterhouse and placed in a bioreactor. Such 
IVDs are generally in good condition and, therefore, 

IL			   interleukin
IQR		  interquartile range
IVD		  intervertebral disc
LBP		  low-back pain
LDCS		  loaded disc culture system
MMP3		  matrix metalloproteinase 3
NGF		  nerve growth factor
NP		  nucleus pulposus
PBS		  phosphate-buffered saline
SD			  standard deviation
TBS		  tris-buffered saline
TNFα		  tumour necrosis factor α
VEGF		  vascular endothelial growth factor
YLDs		  years lived with disability

Introduction

LBP is the leading cause of morbidity and YLDs 
worldwide (Vos et al., 2017). Several causes have been 
related to LBP, the main being lumbar degeneration, 
which is thought to account for approximately 40 % of 
all LBP cases (de Schepper et al., 2010; Pye et al., 2004; 
van Tulder et al., 1997). IVD degeneration is a process 
in which the healthy IVD follows a vicious cycle 
towards joint destruction (Vergroesen et al., 2015).
	 The healthy IVD consists of two cartilaginous 
endplates that are attached to the adjacent vertebrae 
and confine the NP, which is the core of the IVD, and 
the AF, which encircles the NP (Shapiro et al., 2012). 
The NP contains NP cells that produce a large amount 
of proteoglycans and collagen type II (Ohshima and 
Tsuji, 1989; Roberts et al., 1991). Since proteoglycans 
are negatively charged, an osmotic pressure attracts 
water into the NP creating an intradiscal pressure 
(Ohshima and Tsuji, 1989). This causes tension in 
the collagen fibres of the AF and enables the IVD to 
withstand the high compressive forces imposed by 
gravity and muscle tension. The IDD is an irreversible 
process characterised by altered cell behaviour, loss 
of NP matrix and changed joint mechanics (Adams 
and Roughley, 2006; Weber et al., 2015). This vicious 
circle of events can be initiated by various factors of 
both biological and mechanical nature (Vergroesen 
et al., 2015). The alterations in cell biology and 
matrix turnover essentially leads to a fibrous NP, 
which can no longer sustain compressive loads and 
enhance structural and biomechanical failure, largely 
mediated by catabolic processes (Le Maitre et al., 2015; 
Risbud and Shapiro, 2014; Vergroesen et al., 2015; 
Vo et al., 2016). Ultimately, IDD can result in spinal 
instability, with decreased disc height, tears and clefts 
in the degenerating AF and bulging of the disc into 
the spinal canal. The IVD loses its intradiscal pressure 
and the hydrostatic pressure experienced by NP cells 
switches to shear stress, which induce catabolic and 
inflammatory gene expression (Emanuel et al., 2015; 
Iatridis et al., 1997; Paul et al., 2013). These changes 
lead to compression of neural tissues, neurovascular 
invasion of the disc and inflammation of the adjacent 
bone, all inducing chronic pain (Le Maitre et al., 2015).
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offer a reproducible experimental environment. Well-
defined mechanical studies have shown that regular 
diurnal loading is a prerequisite for the IVDs to stay 
healthy (Paul et al., 2012), while overloading leads 
to the onset of disc degeneration, as characterised 
by increased catabolic and inflammatory gene 
expression (Paul et al., 2013). However, this condition 
is only the start of disc degeneration and still far from 
a moderately degenerated human IVD, which is the 
target for regeneration studies. To obtain degenerate 
conditions, several methods have been used. The 
injection of trypsin and papain into bovine motion 
segments leads to a decrease in glycosaminoglycan 
content and cellularity within the NP (Roberts et al., 
2008). Walter et al. (2015) added TNFα to the culture 
medium to induce an inflammatory and degenerative 
reaction of the NP cells. Teixeira et al. (2015) used a 
similar strategy with the injection of IL-1β, while 
Paul et al. (2018) induced degeneration by injecting 
cABC. While such interventions are useful to study 
the onset and early events in IVD degeneration, 
they do not simulate the moderate degeneration 
at which interventions are targeted. Indeed, more 
severe degeneration is required and it needs to be 
obtained in a fast and reproducible way so that early 
stage therapies can be investigated in an economical 
and rapid manner. Therefore, the aim of the present 
study was to develop a fast and reproducible ex vivo 
model of moderate disc degeneration, which could 
be used as a short-term, isolated model system for the 
screening and evaluation of prospective prevention 
and treatment strategies, prior to long-term testing 
in an in vivo setting.

	 To this end, the study’s hypothesis was that the 
injection of collagenase and cABC (col/cABC) would 
quickly degrade the matrix of the disc, providing an 
altered mechanical environment. In turn, this would 
induce an altered response to load, stimulating 
catabolic mediator (such as IL-1) production as well as 
leading to an increase in catabolic and inflammatory 
enzymes and a decrease in matrix synthesis and 
markers of native disc degeneration, hence mimicking 
the cellular processes seen in moderate human-disc 
degeneration (Table 1).

Materials and Methods

Optimisation of enzyme degradation
Prior to the ex vivo loading studies, the concentration 
of cABC and collagenase type II was determined. The 
spine of one skeletally mature milk goat (between 3 
and 5 years old) was obtained from the local abattoir 
(Sheffield, UK). Thirteen IVDs were randomly 
assigned to the following treatment groups (cABC, 
C3667, Sigma-Aldrich; collagenase type II, 17101015, 
Gibco):

•	 non-injected control;
•	 PBS-injected control;
•	 0.5 U/mL cABC;
•	 1 U/mL cABC;
•	 2 U/mL cABC;
•	 1 mg/mL collagenase;
•	 2 mg/mL collagenase
•	 4 mg/mL collagenase;
•	 1 mg/mL collagenase + 0.5 U/mL cABC;

Table 1. Features of human disc degeneration.

Cellular changes during human 
disc degeneration Reference Method of measurement

Cellular clusters Boos et al., 2002; Gries et al., 2000;
Rutges et al., 2013; Sive et al., 2002 Histological examination

Fissures Boos et al., 2002; Gries et al., 2000;
Rutges et al., 2013; Sive et al., 2002 Histological examination

Demarcation between NP and AF Boos et al., 2002; Gries et al., 2000;
Rutges et al., 2013; Sive et al., 2002 Histological examination

Loss of matrix staining, particularly 
pericellular matrix within the NP

Boos et al., 2002; Gries et al., 2000;
Rutges et al., 2013; Sive et al., 2002 Histological examination

Decreased matrix synthesis
Iatridis et al., 1999; Korecki et al., 2008; 

Le Maitre et al., 2007; Roberts et al., 2001; 
Roughley, 2004

IHC for classical NP 
matrix proteins: collagen 

type II and aggrecan
Increased matrix-degrading 

enzymes
Le Maitre et al., 2007; Pockert et al., 2009; 

Séguin et al., 2006
IHC for MMPS and 

ADAMTs
Increased expression of catabolic 

cytokines by NP cells
Hoyland et al., 2008; Le Maitre et al., 

2005; Phillips et al., 2013 IHC for cytokines

Nerve ingrowth (driven 
by increased production of 

neurotrophic factors by NP cells)
Binch et al., 2015; Lama et al., 2018 IHC for neurotropic 

factors

Angiogenesis (driven by increased 
production of VEGF by NP cells)

Binch et al., 2014; Doita et al., 1996;
Lama et al., 2018; Rätsep et al., 2013 IHC for VEGF

Decreased mechanical properties
Emanuel et al., 2015; Korecki et al., 2008; 
McMillan et al., 1996; Walter et al., 2011; 

Wang et al., 2007; Wuertz et al., 2009

In-line mechanical 
properties
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•	 1 mg/mL collagenase + 2 U/mL cABC;
•	 2 mg/mL collagenase + 0.5 U/mL cABC;
•	 2 mg/mL collagenase + 1 U/mL cABC;
•	 4 mg/mL collagenase + 2 U/mL cABC.

	 The IVDs were injected as described above using a 
29G needle and incubated for 2 h at 37 °C. Following 
digestion, the IVDs were isolated from the spine 
using a scalpel blade and fixed in 10 % v/v neutral-
buffered formalin (Leica) and embedded in paraffin 
wax. 4 µm-thick sections were cut and mounted on 
to positively charged slides and stained histologically 
with haematoxylin and eosin, Masson's trichrome 
and alcian blue to determine the level of matrix 
degradation and identify the enzyme degradation 
methodology able to induce moderate degradation 
of the healthy IVD matrix. The IVDs were inspected 
for signs of matrix degradation (by two researchers, 
CLM and AT), namely presence of micro fissures 
and decreased proteoglycan and collagen staining, 
but whilst avoiding large defects or voids within the 
disc space. Microscopical images were captured to 
document changes.

Caprine samples and IVD isolation
Nine lumbar spines from skeletally mature female 
Dutch milk goats (3-5 years old) were obtained from 
a local abattoir (Amsterdam, the Netherlands). The 
spines were sterilised using medical grade iodide-
alcohol solution. Within 24  h after slaughter, the 
excessive soft tissue and muscles were removed 
and the IVDs with adjacent cartilaginous endplates 
were dissected in two parallel planes using an 
oscillating surgical saw, all under sterile conditions. 
Once dissected, the IVDs (n = 33) were cleaned using 
sterile gauzes to remove muscle or ligament tissue 
and rinsed in PBS and 70 %v/v ethanol to remove 
sawing debris.

LDCS
The LDCS consists of individual culture chambers that 
are placed in an incubator at 37 °C (Paul et al., 2012). 
The total culture period of the IVDs was 10 d and 
the IVDs were cultured in standard DMEM (Gibco) 
supplemented with 10  % FBS (HyClone), 4.5  g/L 
glucose (Merck), 25  mmol/L HEPES (Invitrogen), 
50  µg/mL ascorbate-2-phosphate (Sigma-Aldrich,), 
10,000  U/mL penicillin, 10  mg/mL streptomycin 
and 25 µg/mL amphotericin B (Gibco). Each culture 
chamber contained 50  mL of culture medium that 
circulated continuously at the velocity of 3  mL/h 
by using a peristaltic pump. Medium was changed 
every 3-4 d, after flushing using 25 mL of PBS per 
culture chamber.
	 During the whole culture period, the IVDs were 
loaded with dynamic axial loading consisting of 
simulated physiological loading (Paul et al., 2012). 
This loading pattern started with 16 h of a sinusoidal 
load of 1  Hz that alternated in magnitude every 
30  min (between 0.09-0.11  MPa and 0.1-0.6  MPa), 
followed by 8  h of a low sinusoidal load of 1  Hz 
(0.09-0.11 MPa), reflecting loading magnitudes and 

frequency derived from in vivo measurements of 
pressure in a goat lumbar spine (Paul et al., 2012).

Degeneration
After 3 d of pre-loading with simulated physiological 
loading to establish dynamic equilibrium, loading 
was paused and culture chambers were removed 
from the LDCS. The IVDs (n = 33) were randomly 
divided into three experimental groups to ensure 
disc levels and animals were mixed into the groups 
to account for biological variance:

•	 no injection (i.e. control group; n = 9);
•	 injection with PBS (n = 12);
•	 injection with 1 mg/mL collagenase and 2 U/

mL cABC (n = 12).
The IVDs were removed from their culture chamber 
under sterile conditions and injected using a 29G 
needle with 50 µL of 1 mg/mL collagenase and 2 U/mL 
cABC or PBS, as appropriate. Following injection, the 
IVDs were placed back into their individual culture 
chamber and in the LDCS again. Following 2  h 
digestion, fresh medium was applied and the IVDs 
were subjected to simulated physiological loading, 
as described above, for 7 d.

Biomechanical data analysis
Changes in disc height were measured using an 
OADM 12U6430/S35A optoelectric sensor (Baumer, 
Berlin, Germany) and a Kam-e load cell K-1613 
(Bienfait, Haarlem, the Netherlands) measured the 
forces applied on to the disc. Signals were digitised 
at 100  Hz. Customised programs in MATLAB 
(MathWorks) were used for data analysis. To 
investigate biomechanical properties, outcome 
parameters included disc height loss over time, 
time constants of axial decompression and stiffness 
per day. To calculate disc height changes, the disc 
height at the end of the final day was subtracted 
from the disc height at the end of the first day after 
injection. Time constants were calculated by fitting 
of a stretched exponential on the recovery data (van 
der Veen et al., 2007): 

Where δ is the change in disc height in mm; t is time; 
δ∞ is the disc height at equilibrium; τ is the time 
constant; β is the stretch constant.
	 The quality of fit was checked by visual inspection 
and linear regression analysis with a cut off of 
R2  > 0.98 for analysis, which was always the case. 
Stiffness was calculated by dividing the amplitude of 
the force signal by the amplitude of the disc height 
signal during the final high load phase of the day 
(Emanuel et al., 2015).

Determination by histology and IHC of degeneration 
induction as compared to human disc degeneration
Following completion of loading in the LDCS 
for 10  d (i.e. 3  d pre-load and 7  d post-enzyme 
digestion), the IVDs were removed from their 
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culture chamber and fixed in 10 % neutral-buffered 
formalin for 1 week and, thereafter, decalcified for 
1  week using Decalcifier II (Leica). ~  3  mm-thick 
tissue slices were cut paramidsagittally from the 
IVD using a scalpel and embedded in paraffin 
wax. Thin slices (4  µm) were cut and mounted 
onto positively charged slides (Leica). The extent 
of histological disc degeneration was determined 
by histological grading commonly utilised to assess 
the degree of human disc degeneration, namely 
investigating key features of demarcation, fissures, 
loss of matrix staining and cellular clusters (Fig. 1; 
Table 1) following haematoxylin and eosin, Masson’s 
trichome and alcian blue stainings (Le Maitre et al., 
2004; Sive et al., 2002). IHC was used to assess the 
characteristic proteins that change during human 
disc degeneration (Table 1) in order to determine 
the cellular changes induced by degradation in goat 
discs as compared to the gold standard (human disc 
degeneration). Proteins representative of matrix, 
matrix degrading enzymes, key cytokines and factors 
that in vivo lead to nerve and blood vessel ingrowth 
were investigated: collagen type II, aggrecan, MMP3, 

ADAMTS 4, IL-1β, IL-8, VEGFA and NGF, as 
described previously (Le Maitre et al., 2005; Thorpe 
et al., 2016). Briefly, tissue sections were de-waxed in 
Sub-X Clearing Medium (Leica) and rehydrated in 
industrial methylated spirit (IMS; Sigma-Aldrich). 
Endogenous peroxidases were blocked for 30 min at 
room temperature in IMS containing 3 % (v/v) H2O2 
(Sigma-Aldrich). Antigen retrieval was performed 
by incubating the slides for 30 min at 37 °C in TBS 
(20  mM tris, 150  mM NaCl, pH  7.5) containing 
0.1 % (w/v) CaCl2 and 0.01 % (w/v) α-chymotrypsin 
(Sigma-Aldrich). Following antigen retrieval, slides 
were blocked for 1  h at room temperature in TBS 
containing 1  % (w/v) BSA and 25  % (v/v) serum 
(rabbit or goat, Abcam, matched to the host species 
of the secondary antibody) before primary antibody 
incubation overnight at 4 °C: collagen type II (1 : 100, 
ab3092), aggrecan (1 : 200, ab3778), MMP3 (1 : 400, 
ab53015), ADAMTS4 (1 : 200, ab185722), IL-1β (1 : 100, 
ab53732), IL-8 (1  : 200, ab106350), VEGFA (1  : 100, 
ab52917) and NGF (1  :  100, ab52918) (all Abcam). 
All antibodies were diluted in TBS containing 1 % 
(w/v) BSA. IgG controls were used in the place of 

Fig. 1. Histological features of human 
degenerations utilised for histological 
grading. 
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Fig. 2. Enzyme degradation optimisation. Caprine IVDs were injected with different concentrations and 
combinations of collagenase and cABC and histologically stained with (a,b) Masson trichrome and (c,d) alcian 
blue to detect collagen and glycosaminoglycan deposition, respectively, within the IVDs. More than 1 mg/
mL collagenase destroyed the NP tissue, whereas 1 mg/mL collagenase combined with 2 U cABC induced 
mild degradation of the collagens and proteoglycans in the disc whilst preserving overall tissue structure. 
This was chosen as the optimised degenerative treatment (red box). PBS was injected into caprine IVDs as 
a control. (a,c) Scale bar: 500 μM. (b,d) Scale bar: 100 μM. Red arrows indicate regions of decreased matrix 
staining, Asterisks indicate tissue destruction. 

primary antibodies at equal protein concentrations 
(mouse IgG control: ab170190; rabbit IgG control: 
ab37415; Abcam). Following washes in TBS, slides 
were incubated with biotinylated secondary antibody 
(1  :  500, goat anti-rabbit, ab6720 or 1  :  500, rabbit 
anti-mouse, ab7074, Abcam). Antibody binding was 
detected by adding VECTASTAIN® Elite ABC-HRP 
Kit, Peroxidase (Vector Laboratories) for 30 min at 
room temperature before incubation for 20 min at 
room temperature with TBS containing 0.08 % (v/v) 
H2O2 and 0.65 mg/mL DAB (Sigma-Aldrich). Nuclei 
were counterstained using Mayer’s haematoxylin 
(Leica) and sections were finally dehydrated in IMS, 
cleared in Sub-X Clearing Medium and mounted 
using Mounting Medium Pertex® Histolab (Leica). 
Slides were visualised using an Olympus BX60 

microscope and images captured using CellSens 
software (Olympus). Analysis was restricted to 
morphologically distinct NP tissue: an area of NP 
tissue was identified histologically and cells were 
counted using a panning method to ensure regions 
were not double counted. To avoid selection bias, 
all cells within the field of view were counted as 
immunopositive (brown) or immunonegative (purple 
nuclei only) until a total of 200 NP cells had been 
counted. Then, percentage immunopositivity for NP 
cells was determined.

Statistics
The assumption of normality of the biomechanical 
data was checked by visual inspection of histograms, 
Q-Q plots and box plots of the data within the groups. 



CME Rustenburg et al.                                                                                   Caprine ex vivo loaded disc culture system

27 www.ecmjournal.org

Shapiro-Wilks tests were also performed on the data. 
To test whether the biomechanical data appeared to 
be normally distributed, a one-way ANOVA on the 
effect of treatment group with post-hoc Bonferroni 
correction was applied. Kruskal-Wallis tests were 
used to test for differences in time constants, with 
post-hoc Mann-Whitney U test for differences between 
the three groups. IHC immunopositivity data was 
not normally distributed and, thus, a Kruskall-Wallis 
with Dwass-Steel-Critchlow-Fligner post-hoc analysis 
test was used to identify significant differences in 
immunopositivity across treatment groups. Statistical 
tests were performed using SPSS (IBM Software, 
Armonk NY, USA, version 20 for Windows) or Stats 
Direct (Warrington, UK). A p < 0.05 was considered 
statistically significant.

Results

Optimisation of enzyme degradation
The IVDs accepted a maximum injection volume of 
50 µL. In all treatments, the outer AF was maintained, 
however, the highest concentration of enzymes 
applied to the IVDs obliterated the NP. Where 
collagenase concentrations exceeded 1  mg/mL, 
destruction of the NP was noted (Fig. 1). Thus, such 
concentrations were deemed not suitable for further 
testing within the LDCs. However, at 1 mg/mL of 
collagenase most of the tissue was intact, although 
fissures were observed in the AF, mimicking those 
seen during human disc degeneration, whilst at 
0.5  mg/mL only limited fissures were seen. cABC 
treatments did not induce major defects within the 
tissue but displayed decreased alcian blue staining in 
a dose-dependent manner (Fig. 2). Following visual 
inspection, both researchers (CLM and AT) noted that 
the combination of 1 mg/mL collagenase and 2 U/mL 
cABC (col/cABC) induced features similar to those 
seen during histological examination of human discs, 
mimicking a moderate degradation of collagens and 
proteoglycans in the disc whilst preserving overall 
tissue structure, with the presence of small fissures 
in the NP and AF (Fig. 2).

Biomechanical evaluation
The injection of cABC and collagenase decreased 
the mechanical stability of the IVDs, especially 
in diurnal creep behaviour (Fig. 3). Disc height 
decreased progressively over time, whereas control 
and PBS-injected groups remained in stable dynamic 
equilibrium over the duration of the culture period. 
The mean ± SD loss of disc height between day 1 and 5 
after injection was 0.278 ± 0.16 mm, significantly more 
when compared to 0.029 ± 0.019 mm (p < 0.001) in the 
control group and 0.036 ± 0.034 mm (p < 0.001) in the 
PBS group (Fig. 3). No difference was found between 
the control and PBS group (p = 1.00). There was also an 
increase in time constant 5 d after injection (median 
τ = 5.95 h; IQR: 5.10, 10.47) when compared to the 
final day before injection (median τ  = 3.75 h; IQR: 
3.24, 6.28; p  =  0.002) for the enzyme-injected discs 
(Table 2). This was also significantly increased when 
compared to control (median τ = 3.18 h; IQR: 2.39, 
5.94; p = 0.011) and PBS groups (median τ = 2.60 h; 
IQR: 2.12, 3.44; p = 0.002), which did not differ from 
each other significantly (p  =  0.394). No significant 
changes in stiffness were found after cABC and 
collagenase injection when compared to non-injected 
(p = 0.657), and PBS-injected discs (p = 0.136) (Fig. 3).

Morphological appearance and histological grading
The average histological grade of enzyme-injected 
IVDs (6.2  ±  0.84), with the presence of fissures, 
demarcation, cell clusters and loss of pericellular 
matrix (Fig. 4) indicated that these discs showed 
features similar to moderately degenerated human 
discs, whereas the average histological grades of 
non-injected (2.9 ± 0.96) and PBS-injected (2.6 ± 1.65) 
control IVDs indicated features similar to non-
degenerate human discs. Masson's trichrome and 
alcian blue staining demonstrated that enzyme-
injected discs displayed lower levels of healthy 
extracellular matrix as compared to non-injected and 
PBS-injected controls (Fig. 4).

Matrix synthesis
Following treatment and culture within the LDSC, 
the number of NP cells in enzyme-injected caprine 

Fig. 3. Diurnal creep behaviour 
of the IVDs. Control, non-injected 
discs (green) and PBS-injected 
discs (blue) showed immediate 
equilibrium, whereas the cABC- and 
collagenase-injected discs showed 
decreasing creep behaviour. 
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Fig. 4. Matrix deposition within no-injection (control), PBS-injected (PBS) and enzyme-injected (col/
cABC) IVDs. (a) Masson trichrome staining highlighted collagen deposition and (b) alcian blue staining 
glycosaminoglycans within the extracellular matrix of the NP tissue. Scale bar: 50 µm. (c,d) Microscopically 
tiled image of control and enzyme-injected discs stained with Masson’s trichrome to demonstrate matrix 
destruction in enzyme-injected degenerate discs. Scale bar: 500 µm. 

Time constants of 
pre-load day 3

Time constants of 
treatment day 1

Time constants of 
treatment day 5

Change in disc height 
between treatment 

day 1 and 5
Control 4.03 (2.61, 4.96) 3.19 (2.66, 5.67) 3.18 (2.39, 5.94) 0.029 ± 0.02

PBS 3.36 (2.91, 5.47) 3.10 (2.23, 5.60) 2.60 (2.12, 3.44) 0.036 ± 0.03
Coll/cABC 3.75 (3.24, 6.28) 4.59 (3.33, 7.79) 5.95 (5.10, 10.47) 0.278 ± 0.16

Table 2. Median (Q1, Q3) values of the time constants and mean ± SD values of loss of disc height 
between day 1 and 5 after injection.
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IVDs expressing collagen type II was significantly 
reduced when compared to non-injected (p = 0.022) 
and PBS-injected (p = 0.027) IVDs (Fig. 5). The number 
of NP cells expressing aggrecan was also significantly 
decreased in enzyme-injected IVDs as compared to 
non-injected (p = 0.024) and PBS-injected (p = 0.025) 
IVDs (Fig. 5, isotype controls Fig. 7).

Catabolic enzyme and cytokine expression
The number of NP cells expressing proteins associated 
with IVD degeneration – MMP3 (no-injection vs. 
enzyme p = 0.01; PBS vs. enzyme p = 0.038), ADAMTS4 
(no-injection vs. enzyme p = 0.014; PBS vs. enzyme 
p = 0.029), IL-1β (no-injection vs. enzyme p = 0.006; PBS 
vs. enzyme p = 0.038), IL-8 (no-injection vs. enzyme 
p  =  0.043; PBS vs. enzyme p  =  0.018) and VEGFA 
(no-injection vs. enzyme p = 0.028; PBS vs. enzyme 
p = 0.006) – was significantly increased in enzyme-
injected discs when compared to non-injected and 
PBS-injected discs (Fig. 5,6; isotype controls Fig. 
7). The proportion of NP cells expressing NGF was 

slightly increased in enzyme-injected discs when 
compared to non-injected and PBS-injected discs, 
despite not significantly (no-injection vs. enzyme 
p = 0.064; PBS vs. enzyme p = 0.161).

Discussion

The study aimed to develop a fast, reproducible 
ex vivo model for disc degeneration representing 
the phenotype seen during moderate human 
degeneration and usable as a disease model for 
testing regenerative therapeutics such as biologics, 
biomaterials or cell therapies. The data presented 
demonstrated that injection of 50  µL of 1  mg/
mL collagenase and 2  U/mL cABC into healthy, 
caprine IVDs, followed by application of dynamic 
biomechanical loading for 7  d, induced a cellular 
phenotype with decreased matrix synthesis (collagen 
II, aggrecan) and increased production of catabolic 
enzymes (MMP3, ADAMTS4), cytokines and 

Fig. 5. Expression of extracellular matrix proteins and catabolic enzymes in the NP of no-injection 
(control), PBS-injected (PBS) and enzyme-injected (col/cABC) IVDs. Immunopositive cells are expressed 
as a percentage of total count; the median value is represented by the bars. Inlets show magnified images 
demonstrating clear immunopositive staining. Representative IgG controls included. Statistical significances 
in percentage immunopositivity determined by Kruskal-Wallis test. * p < 0.05. Scale bar: 50 µm. 
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growth factors (IL-1β, IL-8, VEGFA), thus mimicking 
the features seen during moderate human disc 
degeneration. Furthermore, altered biomechanical 
behaviour of the IVDs was observed with increased 
time constants and decreased creep behaviour over 
time.
	 The changes observed in biomechanical properties 
are similar to those seen previously in moderate IVD 
degeneration in humans (Emanuel et al., 2015). In a 
similar ex vivo loaded disc culture system, Emanuel et 
al. (2015) have investigated the mechanical response 
of human IVDs with mild to end-stage degeneration, 
based on Pfirrmann-score (Pfirrmann et al., 2001), 
to diurnal load. In moderately degenerated discs 
(i.e. Pfirrmann grade 3), there was less subsidence 
during a day of loading and a lower subsidence 
rate at the end of the day, with higher stiffness, as 
compared to a less degenerated disc. These changes 
were even more distinct in severely degenerated 
discs (i.e. Pfirrmann grade 4 and 5) (Emanuel et 

al., 2015). Overall, the alterations in mechanical 
behaviour in the ex vivo caprine IVD model were 
reflected by the changes identified in the extracellular 
matrix, as seen by histological staining and grading, 
thereby demonstrating the induction of moderate 
degeneration.
	 Preclinical models of disc degeneration are 
essential tools to evaluate safety and efficacy of new 
clinical treatments. To mimic the disease as much as 
possible, it is important to take characteristic features 
of the human IVD into account, such as the absence 
of notochordal cells in human discs and the size of 
the animal disc relative to the human disc (Daly et 
al., 2016; Thorpe et al., 2018). Since the IVDs of goats 
do not contain notochordal cells (Hoogendoorn, 
2009), have the same proportions as human discs 
(albeit 2-fold smaller) (Krijnen et al., 2006) and are 
mainly loaded by axial compression (Smit, 2002), 
the caprine IVD is an acceptable representative 
model of the human IVD, maybe more so than 

Fig. 6. Expression of catabolic proteins associated with IVD degeneration in the NP of no-injection 
(control), PBS-injected (PBS) and enzyme-injected (col/cABC) IVDs. Immunopositive cells are expressed 
as a percentage of total count; the median value is represented by the bars. Inlets show magnified images 
demonstrating clear immunopositive staining. Statistical significances in percentage immunopositivity 
determined by Kruskal-Wallis test * p < 0.05. Scale bar: 50 µm.
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other models that are much smaller (murine, rat) or 
have much lower disc height (porcine) and contain 
notochordal cells (Daly et al., 2016). The use of an ex 
vivo rather than an in vivo model allows for a better 
control of boundary conditions, including nutrient 
supply and mechanical loading conditions, as well 
as the characterisation of the mechanical properties 
of the healthy and degenerated discs. At the same 
time, it should be recognised that the organ culture 
system lacks an inflammatory system (similar to an 
intact IVD); therefore, the exclusion of surrounding 
tissues removes any potential immune infiltration or 
systemic effect. The ex vivo model presented would 
be best utilised in the short-term to rapidly screen 
the initial effects of potential treatments, before 
performing long-term studies to determine full repair 
in living animal systems that aim to ensure safety 
matters prior to clinical trials.
	 As ex vivo studies in bioreactors are limited to 
3-4 weeks for practical reasons, the main challenge 
of the study was to induce a fast and reproducible 
IVD degeneration, to allow a sufficient time for the 
regenerative treatment to show its efficacy. To assure 
reproducibility, healthy IVDs were taken from not too 
old adult goats (3-5 years). Such healthy discs have 
similar characteristics and serve well as a reference, 
both for degeneration and regeneration studies. A 
complicating factor for creating a degeneration model 
is that the cause of disc degeneration in humans 
is generally unknown (Urban and Roberts, 2003). 
Indeed, various mechanisms have been described, 
varying from genetic to purely mechanical (Kandel 
et al., 2008; Schnake et al., 2006; Urban and Roberts, 
2003), although the presence of a catabolic phenotype 
is well characterised within human disc degeneration 
(Table1) and, thus, can be a useful cellular process 
to mimic in an ex vivo model. This implies that a 
disc degeneration model may look like human disc 
degeneration but does not necessarily represent the 
physiological induction of degeneration of specific 
patients. Furthermore, human discs generally 
degenerate over a relatively long period of time. This 
implies that induction of disc degeneration must not 

only be directed to mechanics and cells but also to 
the extracellular matrix, which is inherently related to 
mechanical behaviour and cell properties (Vergroesen 
et al., 2015).
	 The mechanism of degeneration by cABC is 
attributed to the degeneration of the chondroitin 
sulphate chains of proteoglycans, whereas collagenase 
induces disc degradation by breaking the peptide 
bonds in collagen (Eckhard et al., 2014; Prabhakar et 
al., 2005). Thus, the combined effects modulate the 
key matrix components of the NP (i.e. proteoglycans 
and collagens). There are several other studies that 
have used cABC or collagenase as inducers of IVD 
degradation in vivo. For example, Ghosh et al. (2012) 
have injected cABC intradiscally in the lumbar discs 
of male adult sheep and have observed a decrease in 
disc height of 45-50 % after 3 months in vivo. Sasaki 
et al. (2001) have used relatively high doses of cABC 
(i.e. up to 50 U) and have demonstrated a decrease 
in ovine IVD height of 15 % after 1 week and 30 % 
after 4 weeks. In a rhesus monkey model, Stern and 
Coulson (1976) have identified a loss of disc height 
7  d after collagenase injection. The same findings 
were observed by Growney Kalaf et al. (2014), who 
have shown decreased disc height 48 h after injecting 
collagenase into young bovine IVDs. Hoogendoorn 
et al. (2007) have found disc degeneration without 
signs of severe degeneration after injection of 0.25 U/
mL cABC at 12 weeks. The same effect was shown 
by Gullbrand et al. (2017), who have demonstrated 
that the injection of cABC and nucleotomy cause 
moderate disc degeneration in goats, with a follow-
up after injection of 12 weeks. A follow-up study by 
Zhang et al. (2020) has recently demonstrated that 
this model induces also a catabolic phenotype similar 
to that observed in the present study. In a study 
involving the same bioreactor as the one used in the 
present study as well as using cABC to induce IVD 
degeneration (Paul et al., 2018), disc degeneration 
was identified graded on the Pfirrmann scale as 2-4. 
However, this induction was only following 20  d 
of culture and, thus, not suitable for application of 
regenerative therapy investigation. Furthermore, 

Fig. 7. Negative control IHC staining of caprine IVD tissue. (a) Mouse monoclonal IgG1, kappa) isotype 
control staining. (b) Rabbit polyclonal IgG isotype control staining. IgG controls were used at the same 
protein concentration as primary antibodies. Inlets show magnified images demonstrating clear negative 
IHC for isotype controls on caprine IVD tissue. Cell nuclei counterstained with Mayer’s haematoxylin. 
Scale bar: 50 µm. 
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Paul et al. (2018) have not determined whether a 
true catabolic phenotype was induced. Therefore, 
the current study utilised a slightly higher dose of 
cABC combined with collagenase to induce a more 
rapid degenerative effect, whilst also decreasing both 
proteoglycans and collagens within the disc, and 
determine the cellular phenotype following load. 
The study demonstrated the induction of moderate 
degeneration with cellular changes akin to those 
seen during human disc degeneration (Boos et al., 
2002; Gries et al., 2000; Rutges et al., 2013; Sive et al., 
2002). Importantly, the induced changes in cellular 
phenotype with increased expression of the catabolic 
cytokine IL-1 and its downstream targets, such as 
MMPs, ADAMTS and other catabolic cytokines, 
nerve inducers and angiogenic factors provided a 
model in which not only effects on matrix synthesis 
and biomechanical factors could be determined. This 
provided a potential model that mimicked more 
closely the degradative cascade seen during human 
disc degeneration (Binch et al., 2014; Le Maitre et al., 
2005; Le Maitre et al., 2015; Phillips et al., 2015; Risbud 
and Shapiro, 2014; Vo et al., 2016) and, thus, could be 
utilised to investigate therapies targeting the cellular 
changes seen during disc degeneration as well as 
supporting tissue regeneration.
	 The current study had several limitations. Firstly, 
loading was restricted to 7 d post-enzyme injection, 
which followed 3  d of preload. This time course 
may be too short to develop a new equilibrium after 
inducing degeneration, which was suggested from 
the continual decline in creep behaviour. However, 
IDD is a dynamic process of matrix degradation and 
altered biomechanical behaviour (Vergroesen et al., 
2015) and the biomechanical response of cABC- and 
collagenase-degenerated discs might reflect this. 
This was supported by the increased expression of 
matrix-degrading enzymes, suggesting that natural 
degeneration was ongoing and, thus, an equilibrium 
might not be possible, as may be the case for human 
disc degeneration. Also, the study did not investigate 
the injection of collagenase or chondroitinase alone 
within the LDCS; however, single injections were 
investigated in preliminary studies to determine 
enzyme concentrations for further investigation. 
The combination of both enzymes demonstrated 
disruption of both collagens and proteoglycans, 
mimicking more closely what seen during early 
human disc degeneration and, thus, were selected for 
investigation within the LDCS. Whilst the objective 
of producing a rapid, reproducible ex vivo model of 
IVD degeneration was still achieved, any specific 
effect of each enzyme or dose response cannot be 
inferred within the LDCS. Secondly, an increase in 
time constants for the enzyme-degenerated discs was 
seen, while there were decreases in time constants for 
the control group. However, this was not significant 
and might be explained by the small sample size of 
the control group.
	 This caprine model for moderate IVD degeneration, 
which combined the use of cABC and collagenase to 

induce a rapid onset of degeneration that simulated 
human disc degeneration, provided a good base for 
further research, suggesting its suitability as an ex 
vivo model for regenerative therapeutics that aim to 
interfere with the vicious cycle of disc degeneration 
(Thorpe et al., 2018; Vergroesen et al., 2015).

Conclusion

The study of restorative therapeutics for IVD 
degeneration is hindered by the lack of fast, 
reproducible ex vivo models that closely represent 
human IVD degeneration, prior to the use of 
expensive, time-consuming animal models. The 
present study established a fast and reproducible, 
large-animal ex vivo model of disc degeneration. This 
model system has the potential for use in the rapid 
screening of novel restorative therapeutics, such as 
biologics, biomaterials and cell therapies, enabling 
short-term predictors of repair that may reduce the 
dependence on animal studies.
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Discussion with Reviewers

Reviewer 1: Do the authors believe this model system 
would reduce or fully eliminate the use of live animal 
testing?
Authors: We feel that this model will be particularly 
useful in enabling the screening of potential new 
therapies under loading environments more closely 
matching clinical applications. This will enable only 
the most promising therapies to be selected to go 
forwards for animal testing as a pre-requisite to 
human clinical trials. This approach would enable 
reduced numbers of animal experiments in line with 
the 3Rs principle and reduce associated development 
costs for early stage therapies.

Reviewer 1: Please clarify what clinical conditions 
this model is trying to simulate? Why did the authors 
prioritise catabolism over induction of defects?
Authors: The aim of the study was to develop a 
model mimicking the cellular, matrix and mechanical 
changes seen during human disc degeneration. 
These features are described in Table 1 and Fig. 1 
and provide a range of effects, including loss of 
normal matrix, presence of cellular clusters, fissures 
and demarcation and cellular changes, including 
induction of catabolic enzymes, cytokines and factors 

that are known to regulate angiogenesis and nerve 
ingrowth in human disc degeneration.

Reviewer 1: Does this intervention allow for sufficient 
loosening of the collagenous network to enable 
injection of a hydrogel? How much volume?
Authors: As can be seen in the images of the whole 
disc in Fig. 4, cracks and fissures are induced within 
this model and, thus, we would predict that a similar 
volume for disc area would be able to be injected. 
When similar cracks have been seen in in vivo goat 
models, around 200-500  µL of hydrogels or other 
substances have been able to be injected. With 
naturally degenerate human discs, around 1-1.5 mL 
has been shown to be injected.

Reviewer 2: Please discuss advantages and limitations 
of this model. Specifically address similarities and 
differences between caprine, bovine and human 
IVDs with regards to size, diffusion distance, cell 
type and cell number. Also, please discuss treatment 
strategies that would be most suitable to be tested in 
the three species.
Authors: Bovine, caprine and human IVDs display 
similar cell types as they all lose the early NP progenitor 
cells (notochordal cells) early in development and, 
thus, are useful model systems to mimic human 
degeneration. Whilst bovine and caprine discs are 
generally smaller than lumbar human discs and 
more similar in size to human thoracic discs, with 
consequently reduced diffusion distances, cell 
numbers within caprine discs are similar to those 
seen in human discs. The use of bovine or caprine 
discs within model systems offers the advantage of 
a reduced variability between discs. Therefore, the 
model system described in the present study, which 
enables a reproducible moderate disc degeneration 
to be generated, will enable the exploration of new 
therapeutic options. This model could be utilised 
to perform ex vivo experiments and test treatment 
strategies targeting and modifying the IVD through 
gene, biological, cellular or biomaterial approaches 
or a combination thereof. Then, promising therapies 
could be further explored in whole human LDCS 
and in vivo animal models prior to clinical trials. The 
inclusion of the present model in the therapeutic 
development pipeline will enable fine tuning and 
targeting of therapies before progression to the clinic, 
reducing cost and increasing chance of success.

Editor’s note: The Scientific Editor responsible for 
this paper was Mauro Alini.


