HISTOLOGY OF TENDON AND ENTHESIS – SUITABLE TECHNIQUES FOR SPECIFIC RESEARCH QUESTIONS

N. Angrisani1,3,8*, E. Willbold1,3,8, A. Kampmann2,3, A. Derksen1 and J. Reifenrath1,3

1 Hannover Medical School, Clinic for Orthopaedic Surgery, Hannover, Germany
2 Hannover Medical School, Department of Oral and Maxillofacial Surgery, Hannover, Germany
3 NIFE – Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany
§ These authors contributed equally to this work

Abstract

The musculoskeletal system consists of different components comprising a wide range of tissue types, with tendons being one part. Tendon degeneration or rupture have a high prevalence in all age groups, often with poor outcomes of surgical treatment such as chronic pain and high re-tear rates. Therefore, much effort has been directed to further develop diagnostic and therapeutic methods as well as reconstruction techniques, including using adequate placeholders or implants. Diagnostic approaches and advanced stages of preclinical studies will inevitably include histological examination of the pathologically affected tissue. The present study presents adequate tendon-related, histological techniques, including the embedding of soft- and hard-tissue samples in different media. Consideration is also given to samples containing residual implant materials or having been subjected to standard staining protocols and immunohistochemical procedures. The study further examines cells and tendon structure to detect degenerative, fibrotic or inflammatory conditions and possible foreign-body responses to implanted materials. Infraspinatus tendons from preclinical studies carried on rat and sheep samples, as well as human biceps tendon samples, have been used as example materials.

Keywords: Tendinopathies, hard tissue sectioning, histological evaluation, staining techniques.

Address for correspondence: Dr Nina Angrisani, Hannover Medical School, Clinic for Orthopaedic Surgery, Stadtfelddamm 34, 30625 Hannover, Germany.

Email: Angrisani.nina@mh-hannover.de

Copyright policy: This article is distributed in accordance with Creative Commons Attribution Licence (http://creativecommons.org/licenses/by/4.0/).

List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI</td>
<td>artificial intelligence</td>
</tr>
<tr>
<td>CD</td>
<td>cluster of differentiation</td>
</tr>
<tr>
<td>CSF1R</td>
<td>colony stimulating factor 1 receptor</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>FBGC</td>
<td>foreign body giant cell</td>
</tr>
<tr>
<td>GAG</td>
<td>glycosaminoglycan</td>
</tr>
<tr>
<td>H&E</td>
<td>haematoxylin and eosin</td>
</tr>
<tr>
<td>IHC</td>
<td>immunohistochemistry</td>
</tr>
<tr>
<td>MEA</td>
<td>(2-methoxyethyl)-acetate</td>
</tr>
<tr>
<td>MNGC</td>
<td>mononucleated giant cell</td>
</tr>
<tr>
<td>MRC1</td>
<td>mannose receptor C-type 1</td>
</tr>
<tr>
<td>PCL</td>
<td>polycaprolactone</td>
</tr>
<tr>
<td>PMMA</td>
<td>polymethyl-methacrylate</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>TBS</td>
<td>tris-buffered saline</td>
</tr>
</tbody>
</table>

Introduction

The frequency of tendinopathies differs between different body regions. For example, in the general population, rotator cuff tendinopathy has been observed in 2-7% of pathologies affecting the upper limb (Chard et al., 1991; Miranda et al., 2005), epicondylitis and medial epicondylitis have also been reported with a prevalence of up to 6.6% (Tajika et al., 2014). Tendinopathies are often triggered by repetitive movements (Kvist, 1994) and it is therefore not surprising that athletes seem to be the most frequently affected group and that differences in prevalence between athletes and workers are present (Hopkins et al., 2016). Overall, tendinopathy has a considerable socio-economic impact (Vitale et al., 2007). Tendon ruptures are complex injuries and
are often difficult to treat. Most commonly affected tendons are the Achilles tendons, the flexor tendons, the biceps tendon or the tendons of the rotator cuff (Florit et al., 2019; Sobhani et al., 2013; Thomopoulos et al., 2015; Titan and Andarawis-Puri, 2016). The prevalence of rotator cuff tears positively correlates with age (Lawrence et al., 2019). These tears often cause only moderate pain, which leads to a delayed medical consultation, at a time when changes of the tissues involved, such as tendon retraction, muscle atrophy or fatty infiltration, are already chronic. These chronic pathological changes often lead to poor surgical outcomes in the older age groups, with 11-94 % re-tears (Le et al., 2014). Insufficient and unstructured repair tissue contributes to these failure rates.

The gap between tendon and bone after injury, which is often caused by the retraction of the tendon, needs to be bridged using an adequate placeholder that provides the required stability until the tissue has healed. Before entering clinical studies, development of such placeholders/implants will inevitably include preclinical invitro studies to evaluate their impact on the organism, considering functional and biological performance. Here, histological examination plays a key role.

Tendons and their adjacent tissues show a wide range of tissue characteristics. Muscle tissue is soft and its properties differ depending on the current level of action. Tendons are more rigid than muscles and interconnect muscles with bones. The bone itself is the most rigid component, representing the whole organism supporting structure. These different tissue properties necessitate the use of different histological techniques for scientific investigations. Possibilities comprise of using frozen-section techniques, paraffin-wax section methods and plastic-embedded samples. The latter can be prepared using microtome cutting blades or applying the cutting and grinding method described by Donath and Breuner (1982).

When choosing the optimal histological technique, the enthesis constitutes a special challenge due to the presence of tissues with varying characteristics. It is possible, using subsequent optimised processing, to distinguish between the different bone, cartilage, tendon and muscle regions. However, examination of the transition zone is commonly the most important aspect.

This study systematically discusses histological techniques for processing enthesis and tendon tissue to optimally address a variety of research questions. The examination of cells as well as the structure of tendons were considered in order to assess degenerative, fibrotic or inflammatory conditions and possible foreign-body responses to implant materials. Human biceps tendons and infraspinatus tendons of preclinical studies (rat, sheep) are used as example materials.

Material/origin of sample tissue

The examples given in this study are based on tissue samples deriving from three different species. One part was taken during surgical shoulder replacement procedures carried out at the Clinic for Orthopaedic Surgery (Diakovere Annastift, Hannover Medical School, Hannover, Germany, ethical approval number 7281). All samples were transferred to the histological laboratory for further processing. The other samples derive from either rats or sheep. Both animal studies were part of the Research Unit “FOR 2180 - Graded Implants for Tendon-Bone Junctions”, which aims to develop implants for the reattachment of ruptured tendons. This research project involved the establishment of a chronic rotator-cuff-tear model in rats (approval number 33.12-42502-04-15/2015) to evaluate the general tissue reaction to electrospun PCL mats without and with a different surface coating. Detailed description of this study and the surgical procedures used to implant electrospun PCL patches were published by Willbold et al. (2020).

For the evaluation of tendon implants in a sheep model (approval number 33.19-42502-04-17/2739), female black-headed mutton sheep underwent surgery to detach the infraspinatus muscle from the humeral head, which was either refixed immediately (acute defect model) or after 8 weeks (chronic defect model). Refixation was performed using non-resorbable suture anchors (FArthrex GmbH, Munich, Germany) using a double-row technique, a standard technique for human rotator-cuff-tear refixation surgery. 12 weeks after refixation, animals were euthanised and bone-tendon-muscle samples were excised and further processed for histology.

Embedding of samples

Tissue fixation

Prior to embedding, tissue fixation is required to preserve the cellular morphology. Despite its carcinogenicity, the most common fixative solution is buffered formalin. It is cheap as well as easy to store and handle. Beside formalin, there are numerous

Table 1. Summary of samples used for depiction of staining results.

<table>
<thead>
<tr>
<th>Sample origin</th>
<th>Predominant tissue</th>
<th>Sample size (max length × max width): in mm</th>
<th>Formalin fixation duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>Tendon, connective tissue</td>
<td>8 × 5</td>
<td>2 d</td>
</tr>
<tr>
<td>Rat</td>
<td>Tendon, connective tissue, bone</td>
<td>10 × 5</td>
<td>2-3 d</td>
</tr>
<tr>
<td>Sheep</td>
<td>Tendon, connective tissue</td>
<td>20 × 10</td>
<td>4-5 d</td>
</tr>
<tr>
<td>Sheep</td>
<td>Tendon, connective tissue, bone</td>
<td>40-70 × 30</td>
<td>7-10 d</td>
</tr>
</tbody>
</table>
other fixation solutions, including both single chemicals (such as ethanol) and multi-component fixation solutions (Bancroft et al., 2018; Lawrence et al., 2019; Shields and Heinbockel, 2019). Fixation by adequate storing in ethanol is as simple as with formalin but with lower biological hazards. However, especially for collagen, a clear influence of fixative type or fixation time was shown by Turunen et al. (2017). The study found that following ethanol fixation, collagen shrinkage and loss of alignment is much more pronounced than in formalin-fixed samples and also emphasised the need for careful choice of fixative (Turunen et al., 2017).

Adequate sample fixation depends on sample size and characteristics such as density. Fast fixation limits autolytic processes leading to better histological visualisation (Shields and Heinbockel, 2019). The softer the tissue the easier it is for the fixative to penetrate. For bone tissue, sufficient time should be given for adequate penetration of the fixative.

Tissue specimen sizes, as well as fixation times, covered in this review differed according to tissue origin and content. Values are summarised in Table 1.

Cryopreservation

Cryosectioning is possible but uncommon for non-decalcified specimens. Standard cryosectioning procedures used for soft tissue often destroy hard tissues. Kawamoto (2003) established a method that also preserves hard tissue structures during cryosectioning. The method was subsequently further refined and new protocols published (Kawamoto and Kawamoto, 2020). To preserve tissue structure, thin plastic film templates are applied on the frozen sample prior to sectioning and the residual slice adheres to this film for further processing. This method has been used for bone characterisation by IHC, e.g. in offspring mice (Fecher-Trost et al., 2019), and it would be possible to use it for tendon and enthesis as well. However, special expensive films are necessary, which have to be purchased from Kawamoto’s section lab (Web ref. 1). All staining methods described in this review are also possible on samples produced according to the Kawamoto technique. However, as this technique is rarely used, no example samples are produced and shown in the present review.

Paraffin-wax embedding

Paraffin-wax embedding is the most common embedding technique for nearly all tissue types and numerous staining protocols are available for such embedded sections. All paraffin-wax-embedded samples shown in the present study underwent a standard embedding protocol using Excelsior™ ES Tissue Processor (Thermo Fisher Scientific). Dehydration of the samples was achieved using an increasing alcohol series (propanol, 70 % for 1 h, 90 % for 1 h, 100 % 4 times for 1 h each). Alcohol and wax are immiscible, necessitating a further step. Specimens were rinsed in Xylol (3 times for 1 h each), a clearing agent which first replaces the alcohol and then is replaced by paraffin-wax. Embedding was completed by infiltration (at ~ 60 °C) of paraffin-wax, 3 times × 1 h each, changing medium each time. Next,
the paraffin-wax blocks were mounted on a sample holder, which fitted into the microtome.

It is important to note that specimens that include bone tissue have to be decalcified before paraffin-wax embedding using chelation agents such as EDTA or acids. If small metallic implants or residual parts are present in the sample, a decision must be made whether the interconnecting zone is of interest or not. While some metal alloys, e.g., magnesium, would also dissolve during decalcification in EDTA, metals such as titanium or stainless steel have to be removed in advance. If the evaluation needs to include the direct bone-to-implant interface, the only possibility is embedding in plastic followed by the removal of metal compounds using electrochemical methods (Willbold et al., 2013) or the application of a cutting-grinding technique.

Plastic embedding

Embedding in plastic is the preferred method when non-decalcified bone tissue or metal implants are part of the sample. Two principal types of plastic are available for the embedding of hard tissues and both are provided by Kulzer Technik (Wehrheim, Germany). A detailed description of embedding and staining of non-decalcified bone samples in Technovit 9100 is published by Willbold and Witte (2010).

Technovit 9100 comprises of several agents that have to be combined. Basic liquid (methyl methacrylate), powder (methyl methacrylate in dibenzoyl peroxide), hardener 1 and 2 (dicyclohexyl phthalate, di-benzoylperoxid and N,N,3,5-tetramethylanilin) and regulator (decane-1-thiol) polymerise in the cold (maximum of –2 °C, minimum of –20 °C) by excluding oxygen, therewith dissipating polymerisation heat (Rammelt et al., 2007). While processing demands a more experienced technician, the resulting samples are suitable for all staining techniques. Also, the preparation of ground sections using a band saw and a micro grinder is possible. However, cold polymerisation of large sample sizes is challenging and the lower hardness compared to Technovit 7200 leads to a faster clogging of technical components during sawing and grinding.

Fig. 2. Flowchart for tendon-tissue processing. The possible processing techniques and subsequent selection of staining for different tendon-related histological samples are depicted.
Beside Technovit 9100, another hard-plastic embedding medium – Technovit 7200 – is available with slightly different properties. The chemical component of Technovit 7200 is 2-hydroxyethyl methacrylate isobornyl methacrylate. It polymerises under UV light and is recommended especially for samples that include non-cuttable materials. Its advantages are the uncomplicated processing technique, the large possible sample size and the resulting properties of the embedded tissue block. The hardness of the sample is optimal for the preparation of ground sections prepared by a diamond band saw and micro grinder. However, due to the thickness of the final slice, only surface staining can be performed. While there are staining protocols for the most common dyes, IHC is also possible (Salles et al., 2011) but more challenging and scarcely performed.

These differences are well depicted in Fig. 1. Fig. 1a shows a plastic-embedded sample, prepared by cutting and grinding, containing two titanium screws, which were part of the refixation of the muscle infraspinatus tendon at the humeral head in a sheep. Metal bone anchors with residuals of the adhering suture material are visible. For the refixation using the double-row technique, two different suture anchors were applied: Swive Lock® self-punching, and Corkscrew®FT (both Arthrex, Munich, Germany). While the suture is well recognisable within the screw in the lower Corkscrew®FT anchor, it can be seen outside of the screw in the upper Swive Lock® anchor. Furthermore, the tight bone-to-implant contact can be seen at the lower threads of the lower screw, while there is a small area of cartilaginous tissue near the first thread (Fig. 1a). Fig. 1b also shows a metal implant implanted into the dermis. Here, the tissue-implant compound is embedded in Technovit 9100 and visualised using a reflecting-light microscope. After removal of the metal implant by electrochemical dissolution (Willbold et al., 2013), the cutting of thin microtome sections is possible, enabling high-resolution microscopy for a detailed evaluation of cells (see enlargement, Fig. 1d) in direct vicinity to the former implant location, here depicted by points (Fig. 1c). Fig. 1d shows inflammatory cells in the contact area between implant and tissue. Alternatively, poly methyl methacrylate from other suppliers can be used for plastic embedding, e.g. polyscience Europe GmbH (Hirschberg an der Bergstraße, Germany) or Fluka Chemie GmbH, Buchs, Switzerland, as e.g. used by Plecko et al. (2012).

To help choosing the correct technique for embedding and staining of tendon-related tissue, a flowchart is provided that contains different processing possibilities for different tissue samples (Fig. 2). Table 2 displays the pros and cons for the different embedding possibilities according to the author’s experience.

Staining of samples

There are numerous staining protocols described in the literature. Different stains provide different information about the status of tissues and cells. Expertise needed and technical requirements increase.

<table>
<thead>
<tr>
<th>Technique</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microtome sectioning</td>
<td>Thin slices</td>
<td>No metals</td>
</tr>
<tr>
<td></td>
<td>Nearly all staining techniques</td>
<td>Decalcification of hard tissues necessary</td>
</tr>
<tr>
<td></td>
<td>Cheap</td>
<td>Costs</td>
</tr>
<tr>
<td></td>
<td>Easy</td>
<td>Time/numerous process steps</td>
</tr>
<tr>
<td>Technovit 9100</td>
<td>Thin slices of hard tissue</td>
<td>Costs/special equipment</td>
</tr>
<tr>
<td></td>
<td>Nearly all staining techniques</td>
<td>Thick slices/several cell layers per slice</td>
</tr>
<tr>
<td></td>
<td>Preservation of tissue-implant interface</td>
<td>“Softer” plastic/soiling of equipment</td>
</tr>
<tr>
<td>Cutting/Grinding</td>
<td>Thin slices of hard tissue</td>
<td>Costs/special equipment</td>
</tr>
<tr>
<td></td>
<td>Nearly all staining techniques, including IHC</td>
<td>Thick slices/several cell layers per slice</td>
</tr>
<tr>
<td></td>
<td>Preservation of tissue-implant interface</td>
<td>Only staining of surface/special protocols</td>
</tr>
<tr>
<td>Technovit 9100 or other PMMAs</td>
<td>Thin slices of hard tissue</td>
<td>Experienced technician</td>
</tr>
<tr>
<td></td>
<td>Preservation of tissue-implant interface</td>
<td>Preservation of tissue-implant interface</td>
</tr>
<tr>
<td></td>
<td>Also big metallic implants cuttable</td>
<td>Also big metallic implants cuttable</td>
</tr>
<tr>
<td>Cryosectioning</td>
<td>Thin slices</td>
<td>Hard tissue sections, possible only</td>
</tr>
<tr>
<td></td>
<td>Nearly all staining techniques</td>
<td>with specialised expensive foils</td>
</tr>
<tr>
<td></td>
<td>No influences of fixative on epitopes for IHC</td>
<td>Frozen storage necessary</td>
</tr>
<tr>
<td></td>
<td>Easy/fast processing</td>
<td>Lower quality compared to embedded samples</td>
</tr>
<tr>
<td></td>
<td>Cheap</td>
<td></td>
</tr>
</tbody>
</table>
as well as chances of error with increasing specialty of the protocols. Therefore, careful consideration has to be given to choosing the favoured staining technique. Furthermore, the embedding and sectioning procedure determines the protocol that has to be followed. While there are staining protocols for nearly all common and also more specialised dyes for paraffin-wax-embedded samples, staining of plastic-embedded samples is typically more challenging.

Paraffin-wax- and Technovit 9100-embedded samples are usually cut by microtome to a thickness of around 4-5 µm. Before staining, in a first step, the embedding medium has to be removed and the tissue has to be rehydrated so that the dye can infiltrate the tissue. This is achieved in reverse order of the fixation and embedding process by using xylol followed by a decreasing-concentration alcohol series. Deplasticising Technovit-embedded samples would need a prolonged time span if only xylol is used. This time span can be shortened by performing an intermediate step with MEA before rehydrating.

Ground sections of Technovit-embedded tissue with a standard slice thickness of 50-100 µm have to be stained differently. Due to the thickness and, therefore, large amount of embedding medium, no removal is performed. The staining solution is applied directly onto the embedded sample, after a short etching procedure with formic acid, and it stains the superficial layer of the section. The greater thickness of the section decreases the available resolution because of light scattering within the sample and limits the examination of the sections to lower microscope magnifications. However, examinations at lower magnifications are suitable for cells in close proximity of implants or other soft-hard interfaces.

Staining methods depending upon the specific research question
In the evaluation of tendinopathies and related research, a successive approach is often followed: initially, the aim is a first assessment and overview diagnosis (“general overview”). Subsequently and based on the first diagnosis, a more thorough examination of tissue structure and cells will follow. Depending on the main focus, there are different possibilities for staining the samples. Fig. 3 gives an overview of the common staining techniques and their allocation to the three aforementioned sections.

A list of important staining techniques can be found at the end of the manuscript that provides basic information on their chemical composition and example references.

Overview: general screening of samples
The most common pathological changes in tendinopathy and tendon tears are loss of structure of the collagen fibres (Maffulli et al., 2000; Scott et al., 1998).
2015) as well as increased vascularity (Andersson et al., 2007; Maffulli et al., 2000; Matthews et al., 2006), GAGs (Maffulli et al., 2000) and more rounded tenocytes. For a basic evaluation of cellular reactions, the well-established standard dye-based staining techniques are most suitable. Routine pathological evaluation is predominantly done on H&E-stained samples. Following this methodology, most cells can be identified and a first impression of the tissue structure can be obtained. This method is also used in several research studies (Andersson et al., 2007; Maffulli et al., 2000; Matthews et al., 2006). The same applies for toluidine blue. If bone tissue is part of the sample, toluidine blue offers additional information by staining different stages of mineralisation in different shades of blue, including calcification/chondral ossification of soft tissue parts. Notably, different immersion times in the staining solution can influence the tissue colouring. Therefore, a decision has to be made as to which part is of greater interest – bone/calcification or soft tissue. Fig. 4 shows a calcification/ossification location within the tendon of a muscle infraspinatus (inserting at the humeral head) in a sheep 12 weeks after refixation of the tendon. Fig. 4a shows a ground section that was stained with toluidine blue. The calcified part of the tendon is darkly stained and clearly visible in the centre of the image. It is surrounded by violet-stained regions where endochondral ossification of the tissue takes place. As typically observed in thicker ground sections, the cell types are harder to identify, especially in the outer region of the sample, which is deeply stained. In contrast to the ground section, Fig. 4b-d show microtome-cut sections of a corresponding calcification. Again, the region of endochondral ossification is obvious due to its lilac staining by toluidine blue (Fig. 4b) and also in H&E (Fig. 4c). Additionally, the thinner microtome-cut slices allow for a clear identification of the typically blebby and rounded appearance of the chondrocytes. Cells and structure of the adjacent tissue can be easily examined. The typically well-organised tendon structure is lost in the vicinity of the calcified area. Additional information is given using the von Kossa staining method (Fig. 4d), a very common method for detecting and depicting calcifications (Carvalho et al., 2020; Schneider, 2021; Wu et al., 2020; Zegyer et al., 2020). Calcium, which is present as carbonates and phosphates, is replaced by silver ions, which are subsequently reduced to metallic silver in the presence of light. Therewith, calcifications are displayed in black. The most important advantage of this technique is that even small zones of calcifications are reliably detected. Due to the clear difference between black colouring and the other tissue, automated analysis using computer programs is possible and easy to perform. On the other hand, the black colouring also constitutes the biggest disadvantage because in the area of the von Kossa-stained tissue an examination of cells is no longer possible. This fact is well illustrated in Fig. 4d where the whole extent of mineralisation is captured by von Kossa staining. To gain further information about the cells in the periphery of the calcification, which is not stained by von Kossa, different dyes for counterstaining are available (Limraksasin et al., 2020).

Another stain used for the depiction of calcifications is alizarin red (Dai et al., 2020). Compared to von Kossa, alizarin red staining still enables the

Fig. 4. Area of calcification in the tendon of muscle infraspinatus (sheep) after refixation. (a-d) Scale bar: 1 mm. (a) Calcified part of the tendon (white star) is visible in the centre, surrounded by lilac-stained regions (white triangles) of endochondral ossification. Sheep, infraspinatus tendon refixed with suture anchors (double row technique), embedding in Technovit 7200, ground section, thickness 30 µm, toluidine blue. (b-d) Endochondral ossification is well recognisable (white triangles) in the outer region of the central area of calcified tissue (white stars). The thinner microtome sections enable recognition of osseous trabeculae in the centre (white arrows). (d) However, cells are not visible in the deeply-black-stained areas of calcified tissue in the von Kossa-stained sample. (b-d) Sheep, infraspinatus tendon refixed with suture anchors (double row technique), embedding in Technovit 9100, microtome section, thickness 4 µm. (b) Toluidine blue, (c) H&E, (d) von Kossa.
assessment of the structure within the calcified area due to its greater relative transparency. However, it is not a commonly used dye in the histological evaluation of tendon tissue but rather in cell culture tests (Yin et al., 2019) or skeletal staining (Rigueur and Lyons, 2014).

Masson-Goldner trichrome and picrosirius red are further basic or standard-dye-based staining methods. These techniques can be complimentary to a first step tissue assessment using H&E and/or toluidine blue. Masson-Goldner trichrome clearly distinguishes between all different kinds of tissue (mineralised bone, newly formed bone, cartilage, muscle/connective tissue) and rapidly reveals the tissue structure. Its value for orthopaedic samples that include tendon tissue is due to its good affinity for collagen fibres (Courtoy et al., 2020). However, if fibrillary collagen is involved, picrosirius red is advantageous due to its higher binding affinity (Lattouf et al., 2014). The clear contrasting of collagens from the adjacent tissue enables the effective and reliable examination of fibrosis (Huang et al., 2013).

Although alcian blue can be considered as a basic staining regarding cell visibility, it gives additional information on the amount of both sulphated GAGs and non-sulphated hyaluronan, represented by a more blue/less red staining in samples with a large content of GAGs (Maffulli et al., 2000). Fig. 5 shows the insertion area of tendons at the humeral head 12 weeks after reattachment in a sheep model and it displays the same region of enthesis stained with toluidine blue, Masson-Goldner trichrome, alcian blue or picrosirius red. The additional information provided by the respective dye is clearly visible. While toluidine blue (Fig. 5a) already gives a good overview of the structure and cells, Masson-Goldner trichrome (Fig. 5b) visualises small vessels and the transition zone from unorganised collagen or fibrous tissue to the bone. In both alcian blue and picrosirius red stainings, a first assessment can be carried out at low magnification and taking advantage of the strong contrast between the predominating colours (Fig. 5c,d).

Structure

Tendons exhibit a special and unique physiological structure, which is described in detail by others (Thorpe et al., 2013). Their structure of almost exclusively parallel type I collagen fibrils is one of the simplest in connective tissues (Svensson et al., 2017) and provides optimal transfer of forces from muscles to bones. One of the main reasons underlying surgical failure rates following refixation of ruptured tendons is unstructured and insufficient repair tissue. This emphasises the importance of evaluating tendon structure. A straightforward technique for doing so is polarised-light microscopy as it only requires a specialised microscope. The highly ordered

Fig. 5. Comparison of standard dye-based staining techniques, insertion of muscle infraspinatus at humeral head of sheep. (a-d) Scale bar: 1 mm. (a) Overview of structure and cells. (b) Small vessels (white arrows) and fibrocartilaginous transition zone (white stars) recognisable. (c) Areas containing hyaluronic acid and chondroitin sulphate in blue. (d) Depiction of muscle tissue in yellow, visible in the left part of Fig. 5d, with single strands inserting into the unorganised healing tissue near the bone, which is stained deep red. (a-d) Sheep, infraspinatus tendon refixed with suture anchors (double row technique), embedding in Technovit 9100, microtome sections, thickness 4 µm. (a) Toluidine blue, (b) Masson-Goldner trichrome, (c) alcian blue, (d) picrosirius red.
molecular structure of collagen fibres exhibits birefringence, which can be detected very effectively by polarised-light microscopy. A combination with staining techniques, such as picrosirius red, can further accentuate different structures (Junqueira et al., 1979).

Fig. 6 shows the structure of the transition zone from muscle to tendon of the infraspinatus muscle. The sample derives from a sheep that underwent refixation of the detached tendon and a subsequent post-surgical period of 8 weeks. In Fig. 6a, picrosirius red staining allows a clear distinction between muscle (yellow) and tendon tissue (red). The combination of this stain with the simultaneous observation by polarised-light microscopy enables a very clear detection of the structure.

A further simple and useful technique for the visualisation of collagen is the Herovici stain (Michel et al., 2020; Pei et al., 2015; Teuscher et al., 2019). In contrast to picrosirius red or other non-IHC staining techniques, mature (red-stained) and immature (blue-stained) collagen can be distinguished by Herovici staining (Pei et al., 2015). Therefore, it allows the maturation process of new tendon tissue to be followed (Michel et al., 2020). Fig. 7 gives two examples of Herovici-stained tendon samples. Fig. 7a shows the typical structure of a mature tendon next to some loose connective tissue containing many fat cells, while Fig. 7b depicts a part of a pathological human biceps tendon. In this unorganised tissue, both immature and mature collagen fibrils are present, as shown by the red- and blue-stained areas, respectively.

For all tendons, normal or abnormal, the most critical part of the tendon is its insertion into the bone, called the enthesis (Font Tellado et al., 2015; Moffat et al., 2008; Shaw and Benjamin, 2007). Because of the distinct tissue properties, stresses at the entheses are highly concentrated (Font Tellado et al., 2015) and injuries are very common and difficult to treat (Moffat et al., 2008; Shaw and Benjamin, 2007). Entheses of tendons can be classified as either fibrous or fibrocartilaginous entheses (Claudepierre and Voisin, 2005). While tendons that connect to the metaphysis or diaphysis generally do so through fibrous entheses and play a minor role in tendinopathy, most tendons that connect to the epiphysis are fibrocartilaginous entheses (Claudepierre and Voisin, 2005). The sequence of cells from tendon to bone is recurring, as described by e.g. Marinovich et al. (2016). The zone of clearly aligned collagen fibres represents the dense connective tissue of the tendon. It is followed by the zones of uncalcified and calcified fibrocartilage, which are sharply separated from each other. This separation line is called the tidemark (Benjamin and McGonagle, 2001; Marinovich et al., 2016). A single enthesis can exhibit both fibrous and fibrocartilaginous sites (Benjamin and McGonagle, 2001). As for tendon tissue, entheses are also mostly avascular and, thus, refixation of tendon or ligament is difficult due to the associated poor potential for regeneration (Bridgewood et al., 2021; Campbell et al., 2019; Connizzo et al., 2013).

Fig. 8 shows the physiological and pathological appearance of the entheses of the muscle infraspinatus at the humeral head of rats. On the right side (Fig. 8a,b) a physiological enthesis is seen, with the fibrocartilaginous transition zone and the tidemark clearly visible. The conjunction of the fibrils to the bone tissue is already well recognisable in the upper, H&E-stained sample. The polarised-light microscopy image below only reveals how deeply they extend.

![Fig. 6. Comparison of solely picrosirius-red-stained sample and supplementary imaging by polarised-light microscopy.](image_url) Tendon-muscle transition zone, sheep. (a, b) Scale bar: 100 μm. (a) The tight contact between muscle tissue (yellow) and collagen fibres is visible but no transverse bands (white arrows) pointing out where bands should be. (b) Slide from 6a viewed by polarised-light microscopy. The formerly yellow areas of muscle tissue is dark but shows the typical transverse bands (white arrows). The collagen fibres of tendons of picrosirius-red-stained samples is depicted green-yellowish and accentuates the alignment of the fibres. (a, b) Sheep, infraspinatus tendon refixed with suture anchors (double row technique), embedding in Technovit 9100, microtome sections, thickness 4 μm. (a) Picrosirius red. (b) Picrosirius red and polarised-light microscopy.
into the bony tissue. On the right side (Fig. 8 c,d), a sample of the same tendon is shown but 8 weeks after refixation. The main difference can already be seen in the conventionally stained sample: there is no typical transition zone from tendon to bone. The uncalcified fibrocartilage is almost missing and there are no fibrillary extensions that bridge the tidemark to conjoin to bone tissue. Polarised-light microscopy confirms these findings, as no birefringent structures could be seen in calcified fibrocartilage or bony tissue. Although the cellular details cannot be seen with the same high resolution, ground sections offer a valuable and often impressive visualisation of the enthesis. They are particularly useful for samples derived from large animals such as sheep, which are usually too large to show an adequate area on one slide. Therefore, the best solution is often to divide the sample into two parts. One part serves for an evaluation of the whole enthesis while the other part is processed and cut by microtome to allow an assessment of cells. Fig. 9 shows ground sections of sheep tendons. Fig. 9a,b exhibits the common patterning of uncalcified and calcified fibrocartilage and tidemark.

Cells

Tendon healing is separated into three steps: inflammation, proliferation and remodelling (Chisari et al., 2020; Jomaa et al., 2020). While the inflammation phase should not last longer than weeks, its regulated presence is of great importance for the healing process and the structure of the tendon (Jomaa et al., 2020). Tendinopathy could be understood as a failed healing process (Fu et al., 2010) often associated with a prolonged/chronic phase of inflammation. Macrophages play important roles in both healing and inflammation and, in case of the latter, are essential contributors to its resolution (Mantovani et al., 2013). To resolve inflammatory processes, one of the main functions of macrophages is phagocytosis of debris and apoptotic neutrophils (Bystrom et al., 2008). They also play a major role in eliminating foreign material such as degradable implants or dissolving suture materials. Resident macrophages have an irregular cell boundary, an oval, eccentrically located nucleus and dense chromatin (Mescher, 2017). Usually, they have many lysosomes. Due to these features, an experienced investigator could identify macrophages in physiological tissues using standard staining techniques such as Masson-Goldner trichrome (Benjamin and McGonagle, 2007). However, in a pathological situation, hypercellularity of different cell types is often present and differentiation is more difficult. Furthermore, within loose connective tissue, they could resemble fibroblasts and could be misidentified as such.

FBGCs arise from the fusion of macrophages and are almost always found when large foreign bodies are present. Due to their typical structure, FBGCs are easily recognisable even following toluidine blue or H&E staining. The multinucleated cells show a large inner area of few cellular structures and, therefore, low staining intensity while the nuclei are gathered at the outer edges of the cell. Fig. 10a shows a massive invasion of FBGCs following the implantation of PCL fibre mats in rats (toluidine blue). While these multinucleated cells are easily recognisable, especially in pathological tissues, the presence of macrophages or MNGCs (Al-Maawi et al., 2018) is more difficult to assess. Often there are multiple cell types and disorganised tissue in the area of interest and a quantitative analysis of the appearance of macrophages based on the use of standard dye-based staining protocols is difficult. In this context, IHC

Fig. 7. Distinguishing mature and immature collagen fibres using Herovici stain. (a,b) Scale bar: 100 µm. (a) Typical structure of a mature tendon (red/pink-stained area on the left side) next to some loose connective tissue containing many fat cells (right side). (b) Part of a pathological human biceps tendon with unorganised tissue. Immature (blue stained) and mature (red stained) collagen fibrils are present and mingled closely with each other. (a,b) Human tendon biopsies, part of biceps tendon of a patient with aseptic bursitis, embedding in Technovit 9100, microtome section, thickness 4 µm.
represents the best option. The IHC working principle is to choose a specific primary antibody that binds to the tissue antigen of interest. The visualisation of the primary antibody can be achieved in different ways, either directly, by labelling of the primary antibody with a fluorescent dye or an enzyme, or indirectly by using a secondary antibody that binds specifically to the primary antibody. The secondary antibody is labelled and – due to the use of two antibodies – an additional step is necessary.

All standard immunohistochemical protocols are designed for paraffin-wax-embedded or frozen samples, whereas protocols for plastic-embedded samples often have to be established by adapting paraffin-wax protocols. As mentioned before, a PMMA that polymerises in the cold (e.g. Technovit 9100) should be used to avoid protein denaturation due to emission of polymerisation heat.

Tissue processing must be performed with great care to achieve satisfactory results (Ward and Rehg, 2014). Usually, the target tissue antigens are proteins that are sensitive to cross-linking and denaturation. Only frozen sections preserve those antigens unaltered. For paraffin-wax and plastic sections, the fixative solution and the embedding parameters, such as temperature, are important. Fixation is performed by the crosslinking of proteins, including the antigens of interest. Therefore, antigen retrieval is the first mandatory step in nearly all IHC protocols except for cryo-sections. It depends on different parameters, such as antigen of interest, type of tissue, primary antibody used and type and duration.

Fig. 8. Enthesis of muscle infraspinatus to humeral head of a (a,c) native and (b,d) refixed tendon. (a–d)
Scale bar: 100 µm. (a) Physiological enthesis is clearly visible with the fibrocartilaginous transition zone and the tide mark (white stars). The conjunction of the fibrils to the bone tissue is already well recognisable (white arrows). Microtome section, H&E. (b) The polarised-light microscopy image of Fig. 8a emphasises the deep insertion of the fibrils into the bony tissue (white arrows). (a,b) Sheep, infraspinatus tendon refixed with suture anchors (double row technique), embedding in Technovit 9100, microtome sections, thickness 4 µm. (a) H&E, (b) H&E and polarised-light microscopy. (c) Pathophysiological situation of the refixed infraspinatus tendon of a rat 8 weeks after surgery. No typical transition zone from tendon to bone is recognisable, especially with missing fibrocartilaginous zone and no collagen fibrils that extend into the bone. (d) Polarised-light microscopy of Fig. 8c enables visualisation of collagen fibrils and their junction to the bone. In comparison to the physiological tissue their orientation is less directional. In the lower part of d highly polarising residues of the suture material are visible (white triangles). (c,d) Rat, infraspinatus tendon refixed with suture and a polycaprolactone-fibre scaffold, embedding in Technovit 9100, microtome sections, thickness 4 µm. (c) Toluidine blue. (d) Toluidine blue and polarised-light microscopy.
of fixation. There are two main different antigen-retrieval methods available: the proteolytic induced epitope retrieval using enzymes such as proteinase K, trypsin or pepsin, and the heat-induced epitope retrieval using different buffers and pH values (or a combination of both). The most commonly used buffers are citrate buffer (pH 6) or EDTA-containing buffer (pH 8) but there are also different commercially available retrieval solutions. Each protocol must be optimised for each tissue, fixation method and antigen to be studied and, generally, the heat-induced epitope retrieval method has higher success rates than the proteolytic induced epitope retrieval method, especially in the case of soft tissues. However, especially for samples with a large proportion of hard tissue, such as orthopaedic samples, the heat-induced epitope retrieval method has to be performed with great care: boiling destroys the tertiary structure of collagen, which has to be considered during the choice of antibody. Furthermore, the sections are severely affected by the cooking process.

The choice of the primary antibody depends on the species of origin. For example, primary antibody deriving from mice cannot be used for murine samples due to unspecific binding to numerous proteins present in the sample. There are protocols for using antibodies on species out of which they derived (e.g. Mouse on Mouse Polymer IHC KIT, abcam, Cambridge, UK, product number ab269452) but it is complicated and elimination of the background staining is very difficult. Blocking of non-specific binding to endogenous proteins is a step which is necessary to avoid unwanted, non-specific staining of the tissue background. Usually, serum of the origin species of the secondary antibody is used for this.

All staining procedures should be accompanied by positive and negative control samples. Positive control samples are tissue probes, which are known to contain the antigen of interest (e.g. spleen samples for macrophages), while negative control samples are tissue probes which definitively do not contain the antigen of interest. Negative antibody controls are necessary to exclude non-specific signals caused by non-specific antibody interactions with cellular components. Often, normal (non-immune) serum that is free of antibodies to the antigen of interest, or better, isotype antibodies that lack specificity to the target but match the class and type of the specific primary antibody are used. In cases where these reagents are not available, negative controls can also be prepared by leaving out the primary antibody while all other steps are performed. Principles and pitfalls of IHC are well described in Web ref. 2. For the identification of macrophages, common antibodies are anti-CD68, anti-CSF1R, anti-MRC1 and with slightly different specificity anti-CD86 and – especially for mice – anti-F4/80 (Barros et al., 2013; Gordon et al., 2011; Mauro et al., 2016). Fig. 10b shows a similar area of the same sample as Fig. 10a but stained with anti-CD68. FBGCs are even more recognisable than in Fig. 10a and, additionally, singular macrophages can be identified.

As for other stains with distinct colour-contrasting, computer-assisted analysis of the stained areas is also possible. Programs such as Image J (public domain), Visiopharm software (Hørsholm, Denmark), Developer XD software (Definiens, Germany) or similar are capable of recognising different colours and can calculate parameters such as intensity ratios as quantitative values (Brown et al., 2019; Podszun et al., 2020).

Another cell type that plays an important role in innate and adaptive immunity are mast cells (Krystel-Whittemore et al., 2016). After binding to a pathogen, they release inflammatory mediators for its elimination e.g. histamine, heparin, cytokines.
and others (da Silva et al., 2014). As discussed by Alim et al. (2020), mast cells contribute to neurogenic inflammation and the inflammatory reaction during tendon healing. Due to the metachromatic properties of the granules in which the mediators are stored in the cytoplasm of the cells, they are well recognisable already using toluidine blue staining. Up to 200 granules will appear violet-red, which is very eye-catching (Fig. 10c).

Beside mast cells and macrophages/FBGCs, neutrophil granulocytes are often present during inflammatory processes. In the presence of a foreign body such as an implanted biomaterial, they release proteolytic enzymes or reactive oxygen species and also try to participate in the phagocytotic processes (Labow et al., 2001; Mariani et al., 2019). Similar to the detection of macrophages, neutrophil granulocytes as part of a reactive, cell-rich tissue are not easy to detect and quantitative assessment requires further enhancement. In this context, chloroacetate esterase staining, as an enzyme-based staining technique, provides enhanced detection of neutrophils. Fig. 10d shows numerous neutrophil granulocytes in a sample of a human biceps tendon that was excised during surgical treatment of an aseptic bursitis.

Vascularity is a further highly important aspect during the examination of tendon tissue samples. Oxygen and nutrient supply are essential for the healing process as well as for the integration of biomaterials (Gniesmer et al., 2019; Laschke et al., 2006). In non-pathological tendons, especially in the distal part of the infraspinatus and supraspinatus tendons of the rotator cuff, vessels are scarce (Brooks et al., 1992) and are present predominantly in the paratenon (Scott et al., 2015). An increased number of vessels is a prominent feature in histopathology of tendinopathy often associated with neoinnervation (Xu et al., 2011). As already mentioned, an increase in vascularity is also associated with healing processes, as demonstrated for example by Matthews et al.

Fig. 10. Depiction of different cellular reaction within tendon tissue. (a-d) Scale bar: 100 µm. (a) FBGCs within reparation tissue of a refixed tendon in a rat model. (b) Similar area as 9a, labelled using IHC. The macrophage-directed antibody is secondarily labelled using diaminobenzidine, which enables clear identification of not only FBGCs (white stars) but also macrophages (black arrows) and mononucleated giant cells (white triangles). (c) Depiction of mast cells (white arrows) using the metachromatic properties of toluidine blue staining. (d) Occurrence of numerous neutrophil granulocytes (black arrows) as sign of an ongoing inflammatory process within a sample of human aseptic bursitis. (a-c) Rat, infraspinatus tendon refixed with suture and a polycaprolactone-fibre scaffold, embedding in Technovit 9100, microtome sections, thickness 4 µm. (a,c) Toluidine blue, (b) anti-CD68-diaminobenzidine and toluidine blue. (d) Human tendon biopsy, part of biceps tendon of a patient with aseptic bursitis, embedding in Technovit 9100, microtome section, thickness 4 µm, chloroacetate esterase staining.
(2006), who showed a decreasing number of vessels with increasing tendon tear size, indicating more reparative processes in smaller tendon tears.

Blood vessels, often with erythrocytes in the vessel lumen, can be identified using standard staining techniques such as H&E or toluidine blue. To assess their distribution within the tissue or quantitate them is time-consuming and requires an experienced, concentrating observer. Furthermore, obliquely cut vessels may complicate the evaluation. Therefore, IHC is often performed to detect vessels. A very common antibody for their detection in tendon tissue is anti-CD34 (Handa et al., 2003; Matthews et al., 2006; Zabrzynski et al., 2018). Fig. 11 shows a human tendon sample taken from the long part of the musculus biceps brachii. In Fig. 11a, the tissue is stained with H&E, showing a pathologically highly vascularised tissue with further cell infiltrations. Fig. 11b shows accentuated vessels by fluorescence-coupled immunostaining of the endothelial cells using anti-CD34 antibody, which makes it easy to count and measure the diameter of the blood vessels. As anti-CD34 also binds to haematopoietic progenitor cells and leukocytes, these cells could also be counted.

Other staining techniques used for tendon tissue evaluation

The staining techniques discussed so far do not represent a complete description of all possibilities regarding tendon tissue evaluation. However, the present review describes the most commonly used staining techniques that enable a precise and already broad histological evaluation of tendon tissue samples. Moreover, it considers both structural and cellular assessment.

For further evaluation of special cells or other structural components as well as inflammation or differentiation state, there are numerous other stains and antibodies which could provide a deeper insight, e.g. staining of differently polarised macrophages (Dakin et al., 2012), lymphocytes/tenocytes/histiocytes (Terada, 2012), collagen content, especially collagen type I or type III (Galatz et al., 2006, Ge et al., 2020), nerves for example by detection of neuropeptides such as substance P (Ackermann et al., 2003), special glycoproteins such as tenascin or scleraxis as markers of proliferation/regeneration (Nakanishi et al., 2019) or inflammatory markers such as interleukin-1 or interleukin-6 (Shi et al., 2019).

Scoring systems for semiquantitative evaluation of tendinopathies

There is a wide range of scoring systems that are used to evaluate tissue characteristics in tendinopathies and different reviews already exist on this topic. Therefore, the present review only provides a brief overview by summarising some valuable references regarding scoring systems.

Different scores are used by different groups and to answer different research questions. Therefore, comparison of different studies is often difficult. For example, Roßbach et al. (2020) defined five variables such as fibre structure, fibre arrangement, rounding of nuclei, regional variations in cellularity and increased vascularity. They applied a 4-point scoring system that used values from 0 (normal appearance) up to 3 (markedly abnormal appearance). Then, the values for the different variables were summed to a total value ranging from 0 to 15 (Roßbach et al., 2020). This scoring system was adapted from Longo et al. (2008).

Review articles on scoring systems could help when deciding on which score should or could be used. There are two broader review articles published by Loppini et al. (2015) and Titan and Andarawis (2016). The systematic review by Loppini et al. (2015) evaluated histopathological scores for tissue-engineered, repaired and degenerated tendons. They recommend the Movin score and its modifications to assess degenerative changes, as for example done by Tsang et al. (2019). On the other hand, they recommended the Soslowsky, Watkins, Novel and Burssens scores to evaluate tendon repair processes. In their opinion, the Matthys score assesses the histological changes in enthesopathies and the modified Watkins score has been well applied to assess enthesis repair (Loppini et al., 2015).

In their review on scoring systems for tendinopathy, Titan and Andarawis (2016) found that collagen organisation was the only criterion assessed by every scoring system they implemented in their review. Vascularity and cellularity were the next most common markers evaluated, with 5 of the 7 scales taking these morphological changes into account. Cell morphology, continuity and fibrocartilage were used in 3 of the 7 scales.

This short paragraph already shows how many possibilities exist and are applied to assess histopathological changes in tendon-related research. Therefore, the authors suggest referring to the mentioned literature when searching for possible scoring systems.

Summary and conclusion

Tendinopathies are prevalent in orthopaedics and optimal therapies are still challenging since restoration of the special tendon tissue characteristics is rarely achieved. There is a strong need for research into enhanced therapeutic options. Histological evaluation of tendon is an essential component not only in research but also in diagnosis. Consideration for sample processing must take into account the properties of the sample in question. Embedding in paraffin-wax is most common and is the processing
technique of choice for soft-tissue samples. If the sample contains both soft and hard tissues such as calcifications/ossifications, cutting in paraffin-wax is not possible and plastic embedding in Technovit has to be chosen. Existing metal implants pose a special challenge. Here, embedding in Technovit is also mandatory and potential options for further processing are cutting and grinding of the sample or electrochemical dissolution of the implant.

There are different staining possibilities depending on the embedding medium. While paraffin-wax embedding enables all standard and specialised staining techniques, plastic-embedded samples require specific consideration. More complex protocols such as enzyme-based staining techniques or IHC are more challenging and special protocols are needed.

This review presents a compilation of the most common processing and staining techniques regarding tendinopathies, evaluation of their uses and disadvantages. Furthermore, a flow chart was provided for the processing of tendon tissue with different characteristics and a decision guide for common possible staining techniques regarding the different research foci of general overview, structure of tendon tissue and cells within tendon tissue to support optimal sample utilisation.

List of common stains

A list of common and useful staining techniques for the evaluation of tendons and enthesis is provided here. For each stain, basic knowledge, the general chemical content and colouring results are described while advantages and disadvantages have already been discussed. For each staining technique some example of references are given.

This list is not comprehensive but offers a summary of common pivotal techniques. The colours named for the specific structures derives both from established books of microscopical/histological techniques (e.g. Bancroft et al., 2019), manuscripts (see respective stain) and the authors own experience. For further details or additional staining possibilities, refer to the mentioned literature.

Generally, stainings can be divided based on the underlying staining techniques and the following list is sorted accordingly.

Dye-based staining techniques

H&E – general cellular reactions

H&E belongs to the most common and therefore best-established dyes. Haematoxylin is processed to haemalum, which binds to basophilic structures especially in the cell nuclei. Eosin is a synthetic dye that stains acidophilic structures (also called eosinophilic), especially cytoplasmic proteins. Execution of H&E staining for paraffin-wax- and Technovit-embedded slices cut by microtome is similar, with staining duration for haemalum of up to 8 min and eosin of up to 5 min, while Technovit 7200-embedded ground sections have to be stained for up to 40 min with haemalum.

Example references: de Lima Santos et al., 2020; Nakanishi et al., 2019; Rashid et al., 2020; Xu et al., 2019.

Toluidine blue – bone tissue and cellular structures

Toluidine blue is a thiazine dye and also a very common standard staining method, being easy and quick to perform. Cell nuclei appear dark blue while the other tissues are stained blue to light blue depending on their predominant charge. Cytoplasm, aligned collagen (e.g. tendons) or non-aligned collagen (e.g. osteoid) show different shades of blue.

Fig. 11. Tendon sample of long part of muscle biceps brachii for depiction of vessels. (a,b) Scale bar: 100 μm. (a) Large vessel (black star) in the centre of the picture surrounded by numerous small vessels in the periphery (white arrows). (b) Similar part of the sample with immunohistochemical staining of the endothelial walls using fluorescence labelling. (a,b) Human tendon biopsy, part of biceps tendon of a patient with aseptic bursitis, embedding in Technovit 9100, microtome section, thickness 4 μm, (a) H&E, (b) anti-CD34-Cy3 labelled.
while mineralised bone tissue appears light blue to colourless. Furthermore, toluidine blue exhibits metachromatic properties, which means that cell and tissue parts display a colour different from the dye used. For example, granules of mastocytes, cartilage or early stages of wound healing areas are metachromatic red-violet following staining with toluidine blue.

Toluidine blue can be used for both paraffin-wax- and plastic-embedded samples. It can also penetrate well into the surface of the embedding medium so that removal of Technovit from ground sections is not necessary. Independent of the removal of the embedding medium, tissue staining duration is very short.

Example references: Bergholt et al., 2019; Nakagaki et al., 2013; Wang et al., 2017; Yoshida et al., 2016.

Safranin O-fast green – cartilage and bone structures
Safranin O is an alkaline azo dye, usually having two methyl groups. It stains tissue structures in different shades of red. Cell nuclei are coloured deep red, chondrocytes (as specific cell type) light red. The basic substance of cartilage is stained from red to pink/rose depending upon the GAG content.

This allows for a very differentiated evaluation of changes in cartilage structure. In combination with fast green, the cartilage structures can be strongly contrasted from the bone, since fast green does not stain the cartilage but the mineralised bone tissue as well as connective tissue intensely green. Dehydration following staining procedure has to be performed very carefully and only for a short time because the stain is very easily removed.

Example references: Kataoka et al., 2018; Kataoka et al., 2021; Mutsuzaki and Nakajima, 2020.

Masson-Goldner trichrome – different types of tissue
Masson-Goldner trichrome is a stepwise, multipledye coloration. It offers clear staining of nuclei and distinguishes between different types of tissues. Epithelium and muscles are well displayed in different shades of grey whereas collagenous structures, including bone, are in green. Usually, the first applied dye is iron haematoxylin, which stains cell nuclei in dark blue. The other dyes can be applied sequentially or together. The following dyes are used: xylidine ponceau, azophloxine, acid fuchsine, orange G and light green. The differentiation in acetic acid removes orange G at a slower rate out of erythrocytes than out of other tissues, leaving them clearly recognisable in bright orange. Since this staining enables a clear differentiation between several tissues of the musculoskeletal system, it is a favoured staining technique in orthopaedic histology. However, due to the amount of solutions applied, a more experienced technician should perform or supervise the procedure. The intensity of the different dyes depends on the turnaround time of the samples within the single solutions. While certain times are proposed, checking by microscope should be performed during the staining procedure to ensure favourable results.

Example references: Bi et al., 2007; Schmalzl et al., 2019; Wang et al., 2017; Weiler et al., 2002.

Picosirisius red – differentiation between muscles and tendon
Picosirisius red (derivate F3B or F3A) is present in a saturated aqueous solution of picric acid. Picosirisius red staining is used to detect collagen fibres. Muscles fibres, cytoplasm and tissue background appear yellow while the collagen fibres red. This red stain leads to an increase birefringence when it accumulates along the collagen fibres. Therefore, picosirisius red is often used in combination with polarised-light microscopy. This combination additionally allows type I and type III collagen fibres to be separated since they appear in different colours: the thicker type I collagen fibres are presented in yellow-orange while the thinner type III collagen fibres show a green double refraction.

Picosirisius red diffuses slowly into thicker tissue structures. Therefore, a staining time of 1 up to 2 h only leads to pale staining of non-collagen tissues. The staining protocol for paraffin-wax- and Technovit-embedded samples is nearly the same, with prolonged staining time in case of Technovit 9100. Independent of the embedding medium, checking by microscope of the staining result is advisable.

Example references: Blomgran et al., 2017; Kataoka et al., 2018; Nakagaki et al., 2013; Ueda et al., 2019; Zhang et al., 2020.

von Kossa – mineralised/calcified tissue
Marlon Schneider recently published a comprehensive commentary on the von Kossa staining technique (Schneider, 2021). von Kossa staining is a two-step reaction with silver cations reacting firstly with calcium deposits, which are stained transiently in yellow. Secondly, the bound silver is reduced to black metallic silver by organic material in the presence of light (Schneider, 2021). While especially calcium-phosphate-rich tissue areas are stained deeply black, it has to be noted that this technique is unspecific since also chlorides, phosphates, sulphates, carbonates and fatty acids could react. It is also advisable that fixation solutions should not include calcium salts and use of metal instruments should be avoided (Mulsch et al., 2015). The reactive chemicals of von Kossa staining are silver nitrate, pyrogallol and sodium thiosulphate. Execution of the staining procedure does not differ between paraffin-wax- and plastic-embedded samples.

Example references: Carvalho et al., 2020; Limraksasin et al., 2020; Schneider, 2021; Wu et al., 2020; Zegyer et al., 2020.

Alcian blue – extracellular matrix, connective tissue
Alcian blue as a phthalocyanine dye is cationic and water-soluble and stains acidic mucins and GAGs at
low pH values of 1.0 to 2.5. Therefore, e.g. hyaluronic acid or chondroitin sulphate are selectively stained in blue. Depending on the pH value, carboxyl and sulphate groups can be distinguished. Often, additional staining of cell nuclei is performed, e.g. with Nuclear Fast Red-aluminium sulphate solution, since they are not stained by alcan blue itself.

Alcan blue and safranin O are often used separately or in combination to increase their informative value. Depending on the tissue and the previous histological processing, alcan blue stains mainly GAGs whereas safranin O is more specific for proteoglycans. When both dyes are applied in combination, cell nuclei are stained in red by safranin O.

Example references: Ahlen et al., 2014; Bedi et al., 2019; Chard et al., 1994; Kobayashi et al., 2020; Zhang et al., 2008; Shaw et al., 1994; Kobayashi et al., 2020; Pei et al., 2016; Zhang et al., 2019).

Herovici – collagen with differentiation of mature/immature collagen

Herovici staining techniques constitute the use of several dyes, resulting in a polychromatic staining. It distinguishes between young collagen, which is stained in blue, and mature collagen, which is stained in pink to red (Teuscher et al., 2019). As it includes numerous chemicals (coelestine blue iron alum solution, Nuclear Fast Red, metanil yellow, acetic acid, lithium carbonate, fuchsin-picric acid) the staining procedure should be performed by an experienced technician if solutions are prepared. Otherwise, there are staining kits available that provide the ready-to-use solutions (e.g. Staining Kit: HEROVICI for collagen differentiation; 18432, Morphisto GmbH, Germany). Beside collagen, stained structures are cytoplasm (yellow-green), muscles (yellow) and cell nuclei (black) (Teuscher et al., 2019). Staining procedure is similar for paraffin- wax- and plastic-embedded samples.

Example references: Michel et al., 2020; Pei et al., 2015; Teuscher et al., 2019.

Enzyme-based staining techniques

Chloroacetate esterase – neutrophil granulocytes

Enzyme-based staining techniques use already present tissue enzymes to split components of the substrate. For chloroacetate esterase staining, the substrate is naphthol AS-D chloroacetate. The enzyme liberates a free naphthol compound, which then couples by means of an azo coupling reaction to hexazonium pararosanillin forming strongly stained deposits at sites of enzyme activity. Chloroacetate esterase is used to detect neutrophil granulocytes. While this cell type shows a bright-red staining of the cytoplasm, monocytes also react, but with a paler staining result. Furthermore, mastocytes react strongly.

As the successful completion of the staining depends on a competent enzyme reaction, it is necessary to simultaneously stain control slides of known content e.g. spleen or bone marrow samples. On the other hand, a negative control should be performed where the substrate (naphthol AS-D chloroacetate) is left out. For all samples, the embedding medium has to be removed as described earlier. If the Technovit 9100-embedded slices contain bone tissue, decalciying could be achieved by incubating with EDTA-containing buffer for 1 h. There are ready-to-use solutions available, e.g. Usedecal® (decalciying solution, Medite, Switzerland). While the staining procedure itself is not complicated, preparation of the staining solutions involved has to be performed carefully following the protocol. As usual for enzymatic reactions, the staining solution cannot be reused since the substrates are consumed.

Example references: Wichelhaus et al., 2016; Willbold et al., 2020.

Immunohistochemical staining techniques

CD68 – detection of macrophages

CD68 is a transmembrane glycoprotein commonly present in various cells of the macrophage lineage. Macrophages can be distinguished in pro-inflamatory (M1) and more anti-inflammatory (M2) macrophages and further subtypes, which are the topic of several research papers and reviews (Dakin et al., 2012; Koh and DiPietro, 2011; Sunwoo et al., 2020; Xu et al., 2019; Yunna et al., 2020). As a first step to distinguish between these types it is important to determine the number of macrophages as well as multinucleated phagocytes present by respective labelling. Anti-CD68 is available from numerous companies for numerous species and in combination with different labelling systems.

For the samples presented in the present review, a mouse anti-CD68 primary antibody was used, purchased from either abcam (ab955, abcam, Cambridge, UK; dilution 1:100) or OriGene (TA354352, OriGene EU, Herford, Germany; dilution 1:100). The secondary antibody derived from goat (goat anti-mouse) and was purchased from Dianova (GtxMu-003-FBIO, Dianova, Hamburg, Germany; dilution 1:100). A mouse anti-CD68 antibody and was purchased from Dianova (GtxMu-003-FBIO, Dianova, Hamburg, Germany; dilution 1:100) and labelled with biotin. Streptavidin-Cy3 (016-160-084, Dianova, Hamburg, Germany; 2 µg/mL) was used as detection system. After removal of paraffin-wax, antigen retrieval was achieved by boiling in citrate buffer for 20 min. Non-specific binding of the secondary antibody was avoided by blocking with 2 % normal goat serum before incubation with the primary antibody. All rinsing steps were performed in TBS.

Example references: Scott et al., 2008; Shaw et al., 2007; Sugg et al., 2014.

CD34 – detection of endothelial cells

CD34 is also a transmembrane glycoprotein, which is present with highest densities on haematopoietic progenitor cells and leukocytes (stage-specific) as well as on capillary endothelial cells.

The antibody is available from different distributors and out of different species. After blocking the endogenous bonding sites with 2 %
normal goat serum, a mouse anti-CD34 from Boster (PA1334, Boster Biological Technology, Pleasanton, USA; dilution 1:250) was used as primary antibody for paraffin-wax-embedded samples (ovine and human). Secondary antibody and labelling system corresponded to the anti-CD68 protocol [secondary antibody: goat anti-mouse (GtxMu-003-FBIO, Dianova, Hamburg, Germany; dilution 1:500), labelled with biotin, detected using streptavidin-Cy3 (016-160-084, Dianova, Hamburg, Germany; 2 µg/mL)]. Antigen retrieval was performed after boiling in citrate buffer. Citrate buffer was prepared using citric acid, sodium citrate and distilled water. All rinsing steps were carried out using TBS.

Exemplary references: Handa et al., 2003; Zabrzynski et al., 2018; Zabrzynski et al., 2020; Zhang et al., 2016.

Other techniques

Polarised-light microscopy

Structural components of tissue can be easily studied by polarised-light microscopy. It only requires a specialised microscope. Anisotropic objects can be detected because their structure differently influences the rotation of the light they transmit. The original unpolarised light beam is converted so as to be polarised in a single direction by passing it through a polarising filter – normally termed the polariser - before passing through the specimen. After being transmitted through the specimen, the light is passed through a second polarising filter - the analyser – whose rotational position can be adjusted. When the two polarising filters are rotated at 90° to each other, no light will pass through (the field of view will be black) – except where parts of the specimen exhibit birefringence (e.g. oriented fibres or crystals), which are detected as bright parts of the image.

Example references: Liu et al., 2021; Lopez De Padilla et al., 2021; Tempfer et al., 2015; Tempfer et al., 2018.

Acknowledgements

The authors thank Diana Strauch, Stefanie Rausch, Mattias Reebmann and Maike Haupt for excellent laboratory technical work and support and Yvonne Noll for application of ethical approval for human-derived samples. Furthermore, the authors thank the DFG for funding WE4262/6-2 within the framework of FOR 2180.

References

Evaluation depends often on the specific point of view. Parts of our studies concentrate on integration of tendon replacements and a functionally sufficient tendon-to-bone fixation comparable to the original enthesis. In these cases, structural aspects might be most important due to their relevance to the success of refixation. As an associated part, cells, as marker of inflammation and poor/good integration of tendon replacements, are also crucial to assess. If the applied placeholder induces inflammation or adverse cellular effects, the needed structural integration would also be insufficient. If underlying biological processes are of interest, cells such as macrophages (M1, M2), FBGCs and neutrophil granulocytes should be evaluated and more detailed examination techniques additionally used. On the other hand, we evaluated chronic degenerative changes in tendons with the focus on underlying pathological processes of the disease. In these studies e.g. FBGCs are negligible. Changes in collagen structure or composition are important as well as vascularisation and infiltration of inflammatory cells. They will give an indication of progression of the disease.

AI-based methods might help to yield more objective results for collagen structure or cell counting, if slices and stainings are homogeneous. They might enhance comparability and objective quantitative evaluation. However, histological samples from clinical patients or even in vivo studies are often inhomogeneous e.g. in their structure and cutting direction. Depending on the exact location, structure will differ without underlying different pathological conditions. In case of immunostaining, background fluorescence and intensity of specific signal might influence exposure times in different slices. These are only some examples which might complicate a completely standardised AI-based procedure. However, in our opinion there is a need to enhance comparability between studies by establishing uniform evaluation guidelines and collagen structure, vascularity and cellular infiltration are the most important issues in most research questions and yield the most robust results in semi-quantitative scoring.

Gundula Schulze-Tanzil: Do fatty inclusions play a role in degenerated enthesis?

Authors: Fatty inclusions (or infiltrations) do not play a role in the degenerated enthesis itself. There is a great heterogeneity in reporting histopathological changes in tendinopathy. However, there are some semi-quantitative scores available that are used in the literature (e.g. Zabrzyńska et al., 2021, additional...
Fatty infiltration is not part of the evaluation of the enthesis. However, fatty infiltrations are important for another part of the muscle-bone junction: the muscle itself. After tendon rupture, especially full-tear ruptures, the muscles are inactive and chronic changes occur progressively, with fatty infiltration of the muscle tissue being one of the most common changes. The degree of fatty degeneration of the muscle tissue is one of the common parameters when evaluating the chronicity of changes (Barry et al., 2013; Thangarajah et al., 2017; Zumstein et al., 2016, additional references).

Gundula Schulze-Tanzil: How would the authors think about von Kossa and alizarin red stain to show ossifications?
Authors: Both, von Kossa and alizarin red, are common stains to show ossification and are widely used in the literature – and also by the authors’ group – to show calcified areas. Although the tendon itself does not contain osseous tissue, pathologies could lead to mineralised/calcified areas within the tendon. While alizarin red is more common in cell culture tests (Durgam et al., 2019; Rui et al., 2013, additional references), it can also be used for the staining of histological tissue samples (Lu et al., 2020, additional reference; Rigueur and Lyons, 2014). In contrast, von Kossa stain is a very common staining technique to visualise ossifications/calcifications within the tissue of the musculoskeletal system (Carvalho et al., 2020; Limraksasin et al., 2020; Schneider, 2021; Yu et al., 2019).

Gundula Schulze-Tanzil: Which role do elastic fibres and their visualisation play in the enthesis?
Authors: Elastic fibres and their visualisation only play a minor role in the enthesis. Elastic fibres are needed at every location where tissue has to adapt to stresses. For example, arteries, after the pulse wave has stretched the vessel walls, have to contract again to maintain a constant total volume. In the enthesis, a tight contact between tendon and bone is needed to allow for an optimal transfer of stresses to enable joint movement with minimal possible force needed. However, elastic fibre content can change during pathological processes and visualisation might give interesting/important information. For example, Svärd et al. (2020, additional reference) showed that “Elastin levels are higher in healing tendons than in intact tendons and influence tissue compliance”.

Additional References

Svärd A, Hammerman M, Eliasson P (2020) Elastin levels are higher in healing tendons than in intact tendons and influence tissue compliance. FASEB J 34: 13409-13418.

Editor’s note: The Guest Editor responsible for this paper was Britt Wildemann.