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Abstract

Background: Bone and joint infections pose significant clinical challenges, often leading to severe complications and substantial health-
care costs. Traditional antibiotic therapies are becoming increasingly ineffective due to rising antibiotic resistance and the biofilm-forming
ability of bacteria such as Staphylococcus aureus (S. aureus). Antimicrobial coatings offer a promising approach for the prevention and
treatment of implant-associated and bone infections. Following the demonstrated in vitro efficacy of nisin, a naturally occurring antimi-
crobial peptide, in preventing S. aureus biofilm formation, this study investigates the in vivo potential of a nisin-enriched coating to prevent
biofilm-related infections using the Galleria mellonella larva haematogenous implant infection model. Methods: Methicillin-sensitive
S. aureus (MSSA) EDCC 5055 was used to infect larvae implanted with nisin-coated titanium Kirschner wires (K-wires). Survival rates
and bacterial loads on both the K-wires and in larval tissue were analysed. Biofilm formation on K-wires was further analysed using
scanning electron microscopy. Results: The results showed that nisin-coated K-wires significantly improved larval survival and reduced
bacterial burden compared to control groups. Scanning electron microscopy confirmed the absence of biofilm formation on nisin-coated
K-wires. Conclusions: These findings suggest that nisin-enriched coatings could be a viable strategy for preventing bone and joint infec-
tions. Additionally, this study demonstrates the feasibility of testing implant coatings in a cost-effective and ethically sound alternative
in vivo model. Further evaluation and testing of the nisin-enhanced coating in vertebrate animal implant infection models is warranted.
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Introduction encased in a self-produced polymeric matrix, present a sig-
nificant treatment challenge due to their enhanced resis-
tance to antibiotics and the host immune response [4]. Al-
though traditional antibiotic coatings may initially inhibit
bacterial attachment to implant surfaces, they frequently
lose efficacy over time, either due to insufficient long-time
release or the development of bacterial resistance mech-
anisms [5]. This reduced efficacy not only compromises
treatment but also contributes to the broader public health
Biofilms, which are structured bacterial communities crisis of infections caused by antibiotic-resistant bacteria.

Bone and joint infections present significant chal-
lenges in clinical settings, often leading to severe com-
plications, prolonged treatment durations, and substantial
healthcare costs [1,2]. Addressing these infections is cru-
cial, particularly in light of the increasing prevalence of an-
tibiotic resistance, which compromises the effectiveness of
conventional antibiotic therapies [3].
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In search of alternative strategies, antimicrobial pep-
tides (AMPs) have emerged as promising candidates due to
their broad-spectrum activity and lower likelihood of induc-
ing resistance [6]. Among these, nisin, a naturally occurring
AMP produced by Lactococcus lactis, stands out [7]. Nisin
has been widely used in the food industry as a preserva-
tive, recognized for its potent antimicrobial properties and
established safety profile [8]. This history of safe use high-
lights its potential for medical applications, particularly in
combating biofilm-related infections.

A recent study has demonstrated the promising appli-
cation of nisin in medical settings. Specifically, the en-
richment of an ultrathin hydrated Layer-by-Layer (LbL)
coating, composed of biocompatible polyelectrolytes such
as chondroitin sulfate A (CSA) and poly-L-lysine (PLL),
crosslinked with genipin (GnP), has shown potential in in-
hibiting biofilm formation by Staphylococcus aureus (S. au-
reus) in vitro [9]. In this pioneering work, we used CSA, a
polysaccharide found in the bone extracellular matrix, as
a promoter of bone cell differentiation at the bone-implant
interface. Additionally, we incorporated the PLL polypep-
tide as a promoter of cell adhesion. By crosslinking amino
groups of PLL, GnP enhanced the mechanical properties of
the coatings, optimizing their performance in relation to cell
behaviour. When enriched with nisin, these films demon-
strated a viable strategy for preventing bone and joint in-
fections. However, it remains imperative to conduct in vivo
investigations to further evaluate the therapeutic potential
and validate these promising in vitro results.

Our group has recently developed a cost-effective
and ethically sound in vivo alternative, the Galleria mel-
lonella (G. mellonella) larvae implant-infection model, for
evaluating promising implant materials [10]. Therefore,
the present study aims to assess the antimicrobial effi-
cacy of nisin-coated implants in direct infection scenarios,
mimicking conditions observed in open fractures or post-
operative settings, and establish foundational data using
the G. mellonella larvae haematogenous implant-infection
model. This investigation represents the first instance of
testing an antimicrobial coating in this innovative and pur-
poseful screening model, which will serve to prove the con-
cept and lay the groundwork for further preclinical studies.

Materials and Methods
Chemicals

Nisin Z was sourced from Anhui Minmetals Develop-
ment (Hefei, China). Tris(hydroxymethyl)aminomethane
(Tris) or Trizma® base, saline, phosphate-buffered saline
(PBS), poly(ethyleneimine) (PEI; branched, 750 kDa, 50
wt % solution in water), chondroitin sulfate A (CSA; 20—
30 kDa) and poly-L-lysine (PLL; alpha, linear, 40—-60 kDa)
were obtained from Sigma-Aldrich (St. Louis, MO, USA).
Tris-NaCl buffer (10 mM Tris, 150 mM NaCl, pH 7.4 ad-
justed with HCI) was prepared using pure water (resistivity
18.2 M2 cm). Polyelectrolytes and nisin Z solutions were
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prepared in Tris-NaCl buffer at concentrations of 5 mg/mL
for PEI and 1 mg/mL for CSA, PLL, and nisin. Genipin
(GnP), used as a crosslinker, was obtained from Fujifilm
(Tokyo, Japan) and dissolved in PBS at a concentration of
0.25 % (w/v).

Bacteria

In the current study, the methicillin-sensitive S. aureus
(MSSA) EDCC 5055 strain was used. This strain was origi-
nally isolated from a human wound infection at the Univer-
sity Hospital Giessen (Giessen, Hesse, Germany) [11]. The
S. aureus EDCC 5055 strain is well-known for its strong
biofilm-forming ability, and its whole genome sequence is
publicly available [12]. Brain-Heart-Infusion (BHI) broth
(Merck, Darmstadt, Hesse, Germany; 1.10493.0500) was
used to culture the bacteria aerobically at 37 °C with con-
stant shaking at 180 rpm. An overnight bacterial cul-
ture was diluted 1:100 in fresh BHI broth and incubated
at 37 °C under shaking until it reached the logarithmic
growth phase. The bacterial cells were then pelleted by
centrifugation, washed once with PBS, and resuspended
in PBS. The suspension was adjusted to 5 x 107 colony
forming unit (CFU)/mL based on optical density measure-
ments at 600 nm. To confirm the inoculum concentration,
tenfold serial dilutions were performed, and the samples
were plated on lysogeny broth (LB) agar plates (Carl Roth,
Karlsruhe, Baden-Wiirttemberg, Germany; Yeast extract-
2363.4, Trypton-8952.4, Agar-5210.5, NaCl-3957.2).

Antimicrobial Nisin-Enriched Layer-by-Layer Coating

Titanium Kirschner (K)-wires (designated as “T”; 0.8
mm diameter, 5-6 mm in length; Depuy Synthes, Zuch-
wil, Solothurn, Switzerland; 492.090) were first rinsed with
ethanol, dried, and then cleaned with UV-ozone for 60 min.
Afterwards, they were immersed in ethanol overnight and
dried again. The K-wires were then placed on a sample
holder and immersed for 30 min in a 5 mg/mL PEI Tris-
NaCl buffer solution, followed by a 10 min rinse in Tris-
NaCl buffer (Fig. 1). PEI was used as a precursor layer
before the LbL film buildup, as it is widely accepted that
this uniform anchoring layer provides a reproducible sur-
face for LbL substrates [13].

Next, the substrates were immersed for 10 min into
a 1 mg/mL CSA Tris-NaCl buffer solution, followed by
another 10-min rinse in Tris-NaCl buffer. This process
was then repeated with PLL. The alternating process be-
tween CSA and PLL was continued until six CSA/PLL
layer pairs were assembled. The coating was subsequently
rinsed with PBS to remove any aminated molecules of Tris,
and crosslinked with GnP in darkness overnight.

After crosslinking, the coated K-wires were rinsed
with both PBS and Tris-NaCl buffer. An outer layer of CSA
was then adsorbed. Half of the K-wires were immersed in a
nisin solution for 48 hours (designated as “T + C + Nisin”),
while the remaining K-wires were immersed in Tris-NaCl

Com
CELDR maczziaLy


https://www.ecmjournal.org/
https://www.ecmjournal.org/
https://doi.org/10.22203/eCM.v051a08

European Cells and Materials Vol.51 2025 (pages 136—144) DOI: 10.22203/eCM.v051a08

Nisin
GnP
PLL
CSA
PEI

Fig. 1. Schematic representation of the Layer-by-Layer coating process for titanium K-wires. This figure illustrates the step-by-
step preparation and coating of titanium K-wires using the Layer-by-Layer (LbL) technique. It depicts the precursor layer application
with poly(ethyleneimine) (PEI), alternating deposition of chondroitin sulfate A (CSA) and poly-L-lysine (PLL) layers (6 times), genipin
(GnP) crosslinking, and final functionalization with nisin Z to create an antimicrobial coating. The figure was created with Microsoft

PowerPoint. K-wires, Kirschner wires.

buffer as controls (“T + C”). Finally, all K-wires were rinsed
with Tris-NaCl buffer, followed by PBS, and dried under
gentle nitrogen flow.

Galleria mellonella

G. mellonella larvae were obtained from Evergreen
GmbH (Augsburg, Bavaria, Germany; 2013) and main-
tained on a wheat germ diet (Tropic Shop GmbH, Nord-
horn, Lower Saxony, Germany; 20008) at room tempera-
ture. Throughout the experiment, the larvae were incubated
at 37 °C. For survival experiments, ten larvae in the final in-
star stage, weighing approximately 400—450 mg, were used
per group, and each experiment was repeated three times
(n =30 per group). To determine the bacterial load on the
K-wire surface and within larval tissue, an additional six
larvae per group were utilized.

Sy
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Antimicrobial Activity of Nisin-Coated K-Wires in the
Galleria mellonella Larvae Haematogenous
Implant-Infection Model

To evaluate the antimicrobial activity of the nisin coat-
ing, nisin-coated K-wires (T + C + Nisin) were implanted
into the rear end of the G. mellonella larvae by piercing the
cuticle with the sharp end of the K-wire (Fig. 2). The larvae
were incubated at 37 °C for one hour, after which each larva
was injected with 10 pL of an S. aureus suspension in PBS
(5 x 10° CFU/larva). Larval survival was monitored over a
5-day period. Three control groups were included: titanium
K-wires with an injection of 10 uL PBS (“T (non-infected
control)”), titanium K-wires with coating process but with-
out nisin (“T + C”), and uncoated titanium K-wires (“T”),
both with an injection of 10 uL of S. aureus suspension.
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Fig. 2. Schematic representation of the G. mellonella haematogenous implant-infection model used in this study. K-wires without
coating (“T”), K-wires with the coating process but without nisin (“T + C”), and nisin-coated K-wires (“T + C + Nisin”) were implanted
into the larvae, and 10 pL S. aureus inoculum (5 x 10% CFU/larva) was injected after one hour. As a non-infected control, non-coated
K-wires were implanted, followed by an injection of 10 uL after one hour (“T (non-infected control)”). The survival of the larvae was
monitored for 5 days. Each experimental group contained 30 larvae. At one day after infection, the number of CFU at the implant
surface and in the tissue of the larvae was quantitatively determined (additional larvae, n = 6 per group). The figure was made with
Microsoft PowerPoint, with parts being created using https://www.biorender.com. S. aureus, Staphylococcus aureus; G. mellonella,
Galleria mellonella; CFU, colony forming unit.
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Fig. 3. Prevention of Staphylococcus aureus haematogenous implant infection by nisin-coated K-wires in Galleria mellonella
larvae. Titanium Kirschner wires (K-wires) were implanted into the larvae, followed by an injection of 10 uL S. aureus inoculum (5 x
10° CFU/larva) after 1 hour, or an equivalent volume of phosphate-buffered saline (PBS) for the non-infected control group. The graph
displays the percentage survival over time (in days) for larvae implanted with uncoated K-wires (“T”), K-wires subjected to the coating
process but without nisin (“T + C”), and nisin-coated K-wires (“T + C + Nisin”’). Non-infected larvae served as additional controls (“T
(non-infected control)”). Survival data were derived from three independent experiments (n = 10 larvae per experiment), and statistical
analysis was performed using log-rank test. **p < 0.01.

Quantitative Culture while the larval tissue was homogenized using a micro

The antimicrobial efficacy of the nisin coating was tissue homogenizer (Fisher Scientific, Schwerte, North
evaluated by determining the bacterial load on the K-wire ~ Rhine-Westphalia, Germany; 15344182). The resulting
surface and within the larval tissue. On day 1, K-wires from sonicates from the K-wires and the homogenates from the

all experimental groups (n = 6) were explanted from the lar- larval tissue were serially diluted tenfold in PBS and plated
vae. Both the K-wires and the larval tissue were collected ~ ©nto LB agar plates supplemented with ampicillin to sup-
and processed to quantify the bacterial burden. press the growth of skin-derived bacteria. The number of

The K-wires were subjected to sonication at 45 kHz CFU per sample was determined after overnight incubation

for 2 min in a water bath sonicator (Ultrasonic Cleaner at 37 °C.f]?actefigl load “{as expressed as 101g1o CFU per
USC-T; VWR, Ismaning, Bavaria, Germany; 142-0087), 100 mg of larval tissue or log1o CFU per implant.
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Fig. 4. Effect of nisin coating on bacterial burden in larval tissue and on the implant surface. Titanium Kirschner wires (K-wires)

were implanted into the larvae, followed by an injection of 10 L of S. aureus inoculum (5 x 10° CFU/larva) after 1 hour. The bacterial
load is displayed as: (A) S. aureus in larval tissue (log CFU per 100 mg tissue) and (B) S. aureus on the K-wires (log CFU per implant),

measured one day after implantation. Data are shown for uncoated K-wires (“T”"), K-wires subjected to the coating process but without
nisin (“T + C”), and nisin-coated K-wires (“T + C + Nisin”). Quantitative culture data were obtained from 6 larvae per group, and

statistical analysis was performed using Mann-Whitney U test. **p < 0.01.

Scanning Electron Microscopy (SEM)

One day after implantation, K-wires were removed
from the larvae and immersed in PBS. The samples were
washed twice with PBS to eliminate planktonic cells and
then fixed with 2.5 % glutaraldehyde (NeoFroxx GmbH,
Einhausen, Hesse, Germany; LC-10058) at 4 °C for 24
hours. After fixation, the glutaraldehyde was removed by
washing the samples six times with PBS. The samples were
then dehydrated through a graded ethanol series (30 %, 50
%, 70 %, 80 %, and 96 % ecthanol), with each step lasting 15
min, followed by three washes with 100 % ethanol for 30
min. Once dehydrated, the samples were dried using a crit-
ical point dryer (Leica EM CPD300, Leica, Wetzlar, Hesse,
Germany) and sputter-coated with gold and palladium (Po-
laron Sputter Coater SC760, Leica, Wetzlar, Hesse, Ger-
many). SEM analysis was performed using a LEO1530
microscope operating at 15 kV (Ziess, Oberkochen, Baden-
Wiirttemberg, Germany).

Statistical Analysis

Statistical analysis was conducted using GraphPad
Prism (version 7, San Diego, CA, USA). The primary
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outcome, survival, was analysed using the Kaplan—-Meier
method. Survival curves were generated for each experi-
mental group, and differences between the curves were as-
sessed using the log-rank (Mantel-Cox) test. The Mann-
Whitney U test was used to evaluate differences in bacterial
load between groups. All statistical tests were two-sided,
with a p-value of less than 0.05 considered statistically sig-
nificant.

Results

Nisin-Coated K-Wires Show Improved Larval Survival,
Indicating Antimicrobial Properties

Larvae implanted with nisin-coated K-wires (T + C +
Nisin) exhibited a significant improvement in survival (36.6
%) compared to those receiving uncoated titanium K-wires
(T; 3.3 %; p < 0.01). However, no significant improve-
ment was observed when compared to larvae receiving K-
wires with the control coating (T + C; 16.6 %; p = 0.2; Fig.
3). These results suggest that the coating process itself may
exhibit antimicrobial effects, potentially aiding in bacterial
eradication.

www.ecmjournal.org


https://www.ecmjournal.org/
https://www.ecmjournal.org/
https://doi.org/10.22203/eCM.v051a08

European Cells and Materials Vol.51 2025 (pages 136—144) DOI: 10.22203/eCM.v051a08

x 800

x 5,000

% 10,000

Fig. 5. Biofilm visualization using scanning electron microscopy (SEM). SEM analysis of S. aureus attachment on the different K-
wires after 24 hours of incubation in the G. mellonella haematogenous implant-infection model. Hardly any biofilm formation is seen on
the surface of the nisin-coated K-wires (T + C + Nisin), and strongly reduced biofilm formation on the surface of control coated K-wires

(T + C), when compared to the uncoated control K-wires (T), which exhibited significant biofilm formation. Scale bars indicate 100 pm

(800x magnification), 10 um (5000 X magnification), and 5 pm (10,000 X magnification).

Effect of Nisin Coating on the Bacterial Burden on the
Surface of the K-Wire and in Larval Tissue

To assess the effect of the nisin coating on bacterial
colonization on both the K-wire surface and in the larval
tissue, the larvae were dissected 24 hours post-infection,
and tissue and implants samples were collected. The results
showed a significant reduction in bacterial load in the tissue,
with more than a 2-log difference in the nisin-coated K-wire
group (T + C + Nisin; log 4.3 CFU/100 mg tissue) compared
to the non-coated control group (T; log 6.4 CFU/100 mg tis-
sue; p < 0.01; Fig. 4A). On the surface of the K-wires, the

www.ecmjournal.org

nisin-coated samples (T + C + Nisin; log 3.5 CFU/implant)
showed a 1.5-log reduction (p < 0.01), while the control
coated samples (T + C; log 4.7 CFU/implant) showed a 0.5-
log reduction (p = 0.093) compared to the uncoated control
group (T; log 5.2 CFU/implant; Fig. 4B). These findings
demonstrate that the nisin coating contributes to reduced
bacterial colonization on the surface of the K-wire and in
the surrounding tissue.
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SEM Analysis

The SEM analysis of nisin-coated K-wires (T + C +
Nisin) revealed an absence of biofilm formation on their
surfaces (Fig. 5). In contrast, the uncoated control K-
wire samples (T) exhibited significant biofilm formation.
Notably, K-wire samples with the control coating (T + C)
showed a reduction in biofilm formation compared to the
uncoated controls. These findings are consistent with the
quantitative results from the survival and bacterial burden
analyses, further supporting the efficacy of the nisin coating
in preventing biofilm development.

Discussion

The present study demonstrates that a nisin-enriched
LbL implant coating, which was successfully tested in vitro,
can also reduce the risk of implant infection in vivo, though
it cannot completely prevent infection in all cases. This
study is the first to demonstrate that implant coatings can be
evaluated using the alternative animal Galleria mellonella
model in an acute infection setting for implant infection pro-
phylaxis.

Improved Larval Survival and Reduced Biofilm Formation
with Nisin-Coated Implants

In the present study, incorporating the antimicrobial
peptide (AMP) nisin Z into the implant coating led to more
than a 30 % increase in larval survival compared to the un-
coated control group, highlighting its potential to prevent
implant-related infections. The control coating without
nisin exhibited weaker antimicrobial effects, which were
not statistically significant when compared to the nisin-
coated group. These results suggest that the nisin-enriched
coating plays a crucial role in preventing implant infections
in G. mellonella larvae. The antimicrobial action of nisin
likely stems from its mechanism of disrupting bacterial cell
membranes by forming pores, which inhibits bacterial ad-
hesion to surfaces [ 14]. Additionally, nisin binds to lipid I,
a critical molecule in bacterial cell wall synthesis, disrupt-
ing cell wall formation and compromising bacterial struc-
tural integrity [15]. By hindering cell wall synthesis, nisin
not only prevents bacterial proliferation but also inhibits
biofilm maturation.

Like other anti-infective strategies, the nisin-enriched
coating demonstrated a measurable, though not complete,
antimicrobial effect [16,17]. This is likely due to the es-
tablished bacterial load in the model. An excessively high
bacterial load would lead to the death of all larvae, while
a very low load might not result in infection and could be
managed by the innate immune system of G. mellonella lar-
vae.

Antimicrobial Effect of LbL Coating

An antimicrobial effect was also observed from the
LbL coating alone in terms of larval survival, bacterial load,
and SEM analysis. This can be explained by physical and
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chemical changes to the implant surface [18]. However, the
precise mechanism of this effect remains unclear, as no an-
tibiotics, AMPs, or other active agents were applied to the
LbL coating in the control group [19]. Moving forward,
combining the observed antimicrobial properties of the LbL
coating with additional AMPs could offer a synergistic ap-
proach for optimizing implant surface treatments.

Direct Inoculation Allows for Efficient Screening of
Antimicrobial Coatings

The direct inoculation of G. mellonella larvae with S.
aureus EDCC 5055 (5 x 10° CFU/larva) post-implantation
resulted in robust biofilm formation in the control group.
While a pre-incubation step to allow biofilm formation on
the implants before implantation could be considered, it is
less practical for investigating antimicrobial coatings. Pre-
incubation may mask the in vivo effect of the coating, as
it could already act during the in vitro preparation stage.
Thus, the results of this study are particularly significant,
as they demonstrate for the first time that this type of coat-
ing can be effectively assessed in the G. mellonella implant
infection model.

Strengths & Limitations

The use of the G. mellonella model offers several ad-
vantages: it does not require ethical permissions, is easy to
handle, cost-effective, and allows for statistical robustness
by enabling studies with a larger number of animals. Re-
cently, we demonstrated the utility of this model in evaluat-
ing the efficacy of commercially available antibiotic-loaded
bone cement (ALBC) against S. aureus. In this study, poly-
merized ALBC specimens were implanted into the larvae,
followed by a bacterial challenge. The results showed im-
proved larval survival and significant eradication of S. au-
reus infection. These findings align with clinical outcomes
observed in patients undergoing interim implant replace-
ment with ALBC spacers to treat infections [20]. Despite
these strengths, this study has several limitations. Most no-
tably, G. mellonella larvae lack an immune system compa-
rable to humans. While humans have an adaptive immune
system with specialized cells and antibodies that targeting
specific pathogens, G. mellonella relies on an innate im-
mune system with generalized responses to a wide range of
pathogens. However, the larvae’s cellular immune system
is believed to resemble mammalian phagocytotic responses
[21]. Another limitation is the absence of a skeletal system
and bone-associated tissues in the larvae, which restricts
the ability to assess the impact of biomaterial coatings on
bone metabolism. As such, this model does not allow for a
comprehensive study of bone-related processes, highlight-
ing the need for vertebrate models in subsequent testing
stages. From an infection perspective, the short observation
period (limited to five days due to larval development) does
not allow for the investigation of mature biofilms, which
are crucial in chronic infections. Alternative animal models
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with longer survival times would allow for more clinically
relevant investigations.

Conclusions

The findings of this study suggest that nisin-enriched
coatings could be a promising strategy for preventing bone
and joint infections. Furthermore, this study demonstrates
the feasibility of testing implant coatings using an ethically
sound and cost-effective alternative in vivo model. Based
on these findings, further evaluation and nisin-enhanced
coatings in vertebrate animal models is warranted to fully
assess their potential for preventing implant-associated in-
fections.
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