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Abstract

Background: Articular soft tissue mineralization and ossification are clear pathological signs of osteoarthritis (OA) joints. However
their molecular and cellular aetiologies remain largely unknown. Transforming growth factor beta (TGF-β) family members are known
contributors to both pathological ossification and osteoarthritis development. In this study, we used a fibrillin-1 (Fbn1) mutant mouse,
the tight skin (TSK) mouse, to define the detrimental effects of abnormal Fbn1 in TSK mice and known high TGF-β activity in joint
pathology such as articular soft tissue mineralization and ossification. Methods: Knee joints of male and female TSK andwild-type (WT)
littermates were analysed by micro-computed tomography (micro-CT) imaging and histology for articular soft tissue pathologies, as well
as OA severity. Both aged (10, 26, 35 and 52 weeks) and following in vivo non-invasive repetitive joint overloading were used. Results:
We find that male TSK mice develop spontaneous soft tissue ossification from 26 weeks of age, followed by increased osteoarthritis at 1
year-old. In addition, knee joint overloading induced ligament and meniscal mineralisation and ossification in both WT and TSK male
mice, but were significantly more severe in TSK knees, including ossification of the patella ligament and synovial lining. In contrast,
female TSK knees did not develop more severe soft tissue mineralisation compared to littermate WTmice in neither aged nor overloaded
knees. Conclusions: We conclude that Fbn1 mutation, and possibly overactive TGF-β activity in TSK mice, induce articular soft tissue
ossification and osteoarthritis in a sex-specific manner. Further studies are needed to confirm the specific signalling involved and the
relative protection from female mice from such pathologies.
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Introduction

Mineralization is an important biological process
which is responsible for the development of tissues such
as bone, cartilage and teeth, as well as their regeneration.
Yet, this biological process can also occur pathologically in
extra-skeletal tissues [1]. Pathological soft tissue mineral-
ization is a major process involved in heterotopic ossifica-
tion or as a consequence of diseases such as atherosclerosis
[2], ankylosing spondylitis [3], tendinopathy [4] or in joints
during osteoarthritis (OA) [5,6]. Pathological soft tissue
mineralization often occurs due to disturbance in the phys-
iological tissue repair process, and most commonly occurs
following a traumatic injury [7]. As a response to trauma, a

series of signalling events occur in the injury site which trig-
ger migration of inflammatory cells and mesenchymal cells
to facilitate tissue repair. However, excessive transform-
ing growth factor beta (TGF-β) activity may disrupt this
physiological process and cause activation of osteogenic or
osteochondral programmes, and trigger mineralization and
extra-skeletal bone formation [8].

OA is a complex degenerative disease that affects the
whole joint and is characterized, but not limited, by car-
tilage defects, subchondral bone remodelling, osteophyte
formation, and ligament degeneration [9]. Although degen-
erative articular cartilage is considered the most common
outcome of OA, mineralization and pathological endochon-
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Table 1. Animal numbers used.
Males 10 weeks 26 weeks 60 weeks Loading

WT 10 11 4 13
TSK 7 14 4 17

Females 10 weeks 26 weeks 60 weeks Loading

WT 9 11 18 13
TSK 8 12 14 14

TSK, tight skin; WT, wild-type.

dral ossification of the soft tissues in the diseased joint, es-
pecially in the anterior cruciate ligament, synovium, and
menisci also contribute to OA severity and pain [5,6]. Un-
derstanding molecular and cellular mechanisms of articular
soft tissue ossification might represent a novel therapeutic
target to slow OA progression.

Fibrillin-1 (Fbn1) is a 350 kDa protein and a major
structural component of the extracellular matrix (ECM) of
connective tissues with high expression in elastic fibres
[10,11]. The structure and binding affinities to cytokines,
other ECM proteins and cell surface receptors strongly sup-
port multiple roles in tissue integrity and mechanical prop-
erties and in cell signalling [12]. In particular, Fbn1 mi-
crofibrils provide a reservoir for latent TGF-β in the peri-
cellular matrix [13]. This role of Fbn1 is exemplified by
the high levels of active TGF-β in Marfan Syndrome tis-
sues and in murine pre-clinical models with Fbn1 muta-
tions, such as the tight skin (TSK)mouse [14,15]. The latter
harbours an autosomal dominant mutation associated with a
duplication ofFBN1 gene [16], and in addition to its charac-
teristic thick and stiff skin, TSK mice also exhibit Marfan-
like pathologies such as bone overgrowth, cardiac hyper-
trophy, emphysema-like lungs and kyphosis [17,18]. The
close relationship of Fbn1 with TGF-β superfamily pro-
teins, ECM formation and structure is thought to be a major
contributor to the musculoskeletal phenotype of TSK mice.

The general aim of our study is to define the detrimen-
tal effects of Fbn1 using TSK mice as the model organism
for abnormal Fbn1 microfibrils and known high TGF-β ac-
tivity in joint pathology such as articular soft tissue miner-
alization and ossification. Herein we show that knee joints
of TSK mice develop sex-specific mineralization and ossi-
fication in ligaments and synovial tissues, exacerbated by
in vivo joint overloading. These results were first reported
in a preprint available on BioRxiv [19].

Materials and Methods
Animals

Male and female tight skin (TSK) mice imported from
The Jackson Laboratory (Bar Harbor, ME, USA) and main-
tained as a colony at the University of Liverpool. Homozy-
gote TSK mice are not viable, and therefore all mice re-
ferred to TSK are all heterozygotes for the mutated FBN1
gene. To avoid potential breeding issues, breeding pairs
consisted of a male TSK and a wild-type (WT) female, ide-

ally from the same litter. All mice were kept in polypropy-
lene cages of 2–5 mice, subjected to 12-hour light/dark cy-
cles at 21 ± 2 °C, with free access to food (pelleted RM1;
SDS diets, Germany) and water. Both males and females
were left to age to 10 and 26 weeks of age, and to 35 (fe-
males due to corona virus disease (COVID) restrictions) or
60 weeks of age (males). Animal numbers for each group
are included in Table 1. Mice were killed by increasing
amounts of CO2, and knees collected.

Joint Overloading

The right knee of n = 13–17 ten week-old male and
female mice (WT and TSK littermates; see Table 1 for
specific numbers) were mechanically loaded repetitively,
as described before [20]. Briefly, mice were anesthetized
using isofluorane and kept anaesthetised throughout each
loading episode (~7 minutes), which consisted of 40 cy-
cles of 9 N loads (peak load time: 0.05 sec; rise and fall
time: 0.025 sec), with a 2 N holding load in between of 9.9
sec, using the ElectroForce 3100 system (TA Instruments,
USA). Six loading episodes were performed over 2 weeks,
and knee joints were collected 6 weeks after the last load-
ing episode. We showed that this time point is sufficient
to induce soft tissue mineralization in the ligaments and
meniscus [21]. All mice were checked for their health sta-
tus throughout the whole life of the animals to the loading
andwereweighed following the each loading episode; these
included visual assessment of mobility, activity, lethargy,
coat and general mouse appearance, and weighing was per-
formed before every loading episode and a minimum of ev-
ery 2weeks during pathology development. Mouse weights
were not different with genotype at the end of the study
(mean ± standard deviation: males WT: 39.65 g ± 4.45;
male TSK: 39.9 g ± 4.41; female WT: 33.45 g ± 4; female
TSK: 30.42 g ± 5.77).

Micro-Computed Tomography (Micro-CT)

Following fresh tissue collection, knees were fixed in
10 % neutral buffered formalin (Pioneer Research Chem-
icals, Essex, UK) for 24–48 hours, then transferred to 70
% ethanol. We used a protocol used previously [5]. Knees
were scanned at a resolution of 4.5 µmusing a 0.25 mm alu-
minium filter, with a rotation step of 0.6° (Skyscan 1272;
Bruker micro-CT, Belgium). Image reconstruction was
performed using NRecon software (Bruker micro-CT, Bel-
gium), followed by manual selection of regions of inter-
est for the joint space mineralization volume using CTAn
(Bruker micro-CT, Belgium), as described [5], which in-
cluded meniscal tissue and any abnormal mineralized tis-
sues that was not tibial or femoral bone. Mineralized tissue
volume was calculated using the three dimensional (3D) al-
gorithm included in the CTAn software (measured as Bone
Volume). Analysis was performed in a blinded fashion, and
genotypes revealed at the end of analysis. Three dimen-
sional models of the menisci were created using CTVox
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Fig. 1. Spontaneous soft tissue mineralisation and ossification in Male TSK mice. (A) Total volume of intra-articular mineralisation
measured by micro-CT image analysis at 10 weeks (n = 17), 26 weeks (n = 25) and 60 weeks (n = 8) of age; * p< 0.05. (B) 3D volumetric
representation of intra-articular mineralisation in 26 week-oldWT and TSKmale mice, proximal view of the smallest, median and highest
volumes in each group. Blue circle highlight the severe anterior mineralisation seen in TSK mice. (C,D) Coronal toluidine blue stained
knee joints from representative samples from (C) 26 week-old patella ligaments inWT and TSKmice showing signs of cartilage and bone
formation, (D) and from 60 week-old WT and TSK showing severe cartilage and bone formation around the meniscus, in the ligaments
and synovial tissues (red scale bar represents 50 µm). TSK, tight skin; micro-CT, micro-computed tomography; 3D, three dimensional;
WT, wild-type.

from the region of interest selected for mineralized tissue
volume analysis (Bruker micro-CT, Belgium).

Histology

Knee joints were decalcified in 10 % formic acid
(Sigma-Aldrich, UK) for 10 days. Samples were then given
a processing number independent of their genotype and pro-
cessed for wax embedding, and serial sections cut at 6-µm-
thick either the coronal (ageing) or sagittal plane (loaded
samples) across the entire joint. Sections at 120 µm inter-
vals were stained with Toluidine Blue/Fast Green (0.04 %
in 0.1 M sodium acetate buffer, pH 4.0). Pathological as-
sessment of all joints was performed, focusing on the soft
tissues within the joint (including ligaments and synovial
lining). In addition, cartilage lesion severity was graded
in ageing samples using the Osteoarthritis Research Soci-
ety International (OARSI) histopathology initiative scoring
method [22]. Grading each of the four compartments of
the tibiofemoral joint (lateral and medial tibia and femur)
throughout the entire joint allowed for the determination of
average (mean) lesion grades for each condyle, and added
to make a summed mean score for each joint [20]. Analysis

was performed in a blinded fashion, and genotypes revealed
at the end of analysis.

Statistics
Statistical analysis and graphs prepared using Graph-

Pad Prism software (version 10.2.1, San Diego, CA, USA).
Statistical analysis of mineralized volume comparing the
different groups was performed using one-way analysis of
variance (ANOVA) with Tukey’s post hoc test; to test the
significance of the effect of joint loading, paired t-test was
performed for each genotype between the left non-loaded
contralateral knee and the right loaded knee. The statistical
analysis of OARSI histopathology scoring was performed
using one-way ANOVA with Tukey’s multiple comparison
test. Data are presented as box plots of interquartile range,
median, minimum and maximum, showing all individuals.
A p-value< 0.05 was considered as statistically significant.
The p-values are reported as follows: *p < 0.05, **p <

0.01, ***p < 0.001, and ****p < 0.0001.
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Fig. 2. Spontaneous OA development in male TSK mice. (A) Summed mean OARSI cartilage degeneration scores across the whole
joint (n = 33); **p ˂ 0.01, ****p < 0.0001. (B,C) Representative images of Toluidine Blue stained coronal sections showing articular
cartilage degradation (red circle) in the tibia of 60 week-old WT (B) and TSK (C) knee joints (red scale bar represents 50 µm). OA,
osteoarthritis; OARSI, Osteoarthritis Research Society International.

Results
Male TSK Mouse Knees Developed Spontaneous Soft
Tissue Ossification that Precedes Osteoarthritis
Development

Male TSK mice showed significantly increased soft
tissue mineralisation from 26 weeks of age, measured by
micro-CT as a volume of intra-articular joint space (Fig.
1), with volumes increasing from 0.239 × 109 (± 0.013
sem) µm3 in WT male mice at 26 weeks to 0.801 × 109
(± 0.218 sem) µm3 in TSK mice (p = 0.0502) (Fig. 1A).
Significant mineralised tissue mass was formed in the ante-
rior part of the knee joint, as well as some nodules around
the meniscus (Fig. 1B). Toluidine blue staining of histo-
logical sections supports cartilage and even bone forma-
tion in the patella ligament (Fig. 1C,D). In the severely
affected joint, the meniscal attachments to the femur and
tibia, as well as the meniscal ligaments and synovial tissue,
formed proteoglycan-rich ECM with areas of clear ossifi-
cation (Fig. 1D).

The OARSI scoring showed that male TSK mice de-
veloped spontaneous OA compared to WT controls (Fig.
2), from a summedOARSI score across all 4 condyles of the
knee in WT at 60 weeks of age of 2.0 (± 0.196) to a score
of 6.9 (± 2.13; p = 0.0015). While detrimental pathological
changes were observed in male TSK mice at 26 weeks, no
cartilage degeneration was seen at this age.

Male TSK Mice Developed more Severe
Mechanically-Induced Articular Soft Tissue Ossification

Both WT and TSK mice demonstrated increased in-
traarticular mineralisation after repetitive mechanical joint
loading, which was quantified and visualised with micro-
CT (Fig. 3A,B). Loading-induced nodules were seen
around the meniscus (red arrows Fig. 3A) in both WT and
TSK, with more severe volumes observed in TSK mice, as
well as additional mineralised nodules across the joint, in-
cluding in the anterior compartment of the patella ligament.
In WT mice, mineralised volume increased by 0.052× 109
µm3 from 0.233 × 109 (± 0.006) µm3 in non-loaded left
legs to 0.286 × 109 (± 0.008) µm3 (p < 0.0001) in contra-
lateral right loaded knees. In contrast, TSKmice showed an
increase of 0.389 × 109 µm3 from 0.282 × 109 (± 0.010)
µm3 in non-loaded left legs to 0.672 × 109 (± 0.112) µm3

(p = 0.002) in contra-lateral right loaded knees; loaded right
legs showed a significant increase in TSK knees with a p =
0.0002. Histological toluidine blue staining also confirmed
the severity of mineralisation in TSK mice with clear patel-
lar ligament ossification, osteophyte formation and disor-
ganisation of the enthesis of the patella ligament into the
tibia, as well as chondrogenesis in the synovium (Fig. 3C–
F). These suggest a potential mechanical aetiology of these
soft tissue ossification processes in TSK mice.
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Fig. 3. Loading-induced intra-articular soft tissue mineralisation and ossification in male WT and TSK knees. (A) 3D image
representation of the volume of mineralised tissues visualised by micro-CT in WT (top) Control non-loaded and Loaded knees versus
TSK (bottom) control non-loaded and loaded knees (n = 30). 3 examples with the smallest volume, median and highest volumes are
represented for each group. Red arrrows show location of typical load-induced mineralisation nodule formation; blue square highlights
the severe anterior mineralisation seen in TSK joints. Right images represent 3D images of the whole joint. (B) Volume of intra-articular
mineralisation in male WT and TSK knee joint in response to joint loading protocols; statistical significance: Left versus Right (paired
t-test: **p< 0.01; ****p< 0.0001); ANOVA with post-hoc test between all groups ($$$p< 0.001). (C–F) Histological sagittal sections
of knee stained with Toluidine Blue following joint loading in WT (C,E) and TSK (D,F); yellow circles delineate ossified regions of the
patella ligament (D,F); pink line separates synovial lining from patella ligament at the femoral end (E,F) (red scale bar represents 50
µm). ANOVA, analysis of variance.

Female TSK Mice are not Different to Their WT
Littermates

Knee joint mineralisation volumes were similarly
measured by micro-CT in female WT and TSK mice with
ageing (up to 35 weeks of age) and in response to joint load-
ing, as performed inmale mice. In contrast to male mice, no
significant differences with genotype were measured (Fig.
4A,B). Both WT and TSK female mice showed a signifi-
cant increase in intra-articular mineralisation volume in re-
sponse to joint loading, as seen in male mice, with no ef-
fects of genotype seen. In WT mice, mineralised volume

increased by 0.238× 109 µm3 from 0.208× 109 (± 0.007)
µm3 in non-loaded left legs to 0.447 × 109 (± 0.072) µm3

(p = 0.005) in contra-lateral right loaded knees. In contrast,
TSK mice showed an increase of 0.392 × 109 µm3 from
0.228× 109 (± 0.004) µm3 in non-loaded left legs to 0.620
× 109 (± 0.080) µm3 (p = 0.0004) in contra-lateral right
loaded knees.

Discussion
FBN1 mutation in TSK mice, linked to increased ac-

tive TGF-β, resulted in spontaneous and mechanically-
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Fig. 4. Female TSK do not show increased soft tissue mineralisation compared to WT female mice. (A,B) Volume of intra-articular
mineralisation in female WT and TSK knee joint at 10, 26 and 35 weeks of age (n = 72) (A) and in response to joint loading protocols (n
= 27) (B); statistical significance: Left versus Right (paired t-test: **p < 0.01; ***p < 0.001).

induced articular soft tissue ossification, which precede in-
creased OA development. Interestingly, we show that these
effects are largely restricted to male mice. These data sug-
gest that abnormal Fbn1, such as increased degradation,
may contribute to OA articular soft tissue pathologies inde-
pendently of articular cartilage degeneration. Understand-
ing the sex dimorphism in these responses may also give
us clues into sex-specific mechanisms of joint degeneration
with important implications for therapeutic targeting of OA
progression.

High TGF-β activity has been linked to heterotopic
ossification [8,23], which we show to develop in our male
TSK knee joints. Fbn1 acts as a regulator for TGF-β ac-
tivity with the binding of inactive TGF-β precursors in la-
tent complexes in close proximity to the cell surface within
the pericellular environment. By binding the latent trans-
forming growth factor binding protein, Fbn1 regulates the
sequestration and bioavailability of TGF-β [24]. The mu-
tations in Fbn1 result in a failure to form this complex and
previously shown to lead to increased levels of TGF-β in
various tissues [25,26] and also is linked to excessive bone
growth [27]. Although the exactmechanism of pathological
soft tissue mineralization is still not fully understood, the
TGF-β signalling and increased TGF-β activity are often
considered as one of the most important factors contribut-
ing it [28,29]. Toom et al., 2007 [28] previously reported
the presence of TGF-β superfamily proteins in heterotopic
ossification zones, and pointed out the higher bone-forming
activity, especially with the involvement of TGF-β1-3 and
bone morphogenetic protein (BMP)-2 in these zones. Su-
utre et al., 2010 [30] also reported significantly increased
expressions of TGF-β proteins in early stages of heterotopic
ossificiation, and suggested that increased TGF-β expres-
sion, particularly the TGF-β2 and TGF-β3 isoforms, plays
a crucial role in the initiation of heterotopic ossification.
Wang et al., 2018 [8] used transgenic mouse approaches
and inhibitory antibody treatment to show the importance
of TGF-β in heterotopic ossification in mouse skeletal tis-

sues including tendons. Although it is known that alter-
ations in Fbn1 result in increased active TGF-β in TSK
mice, which in turn is closely linked with soft tissue miner-
alization and ossification, our current study did not directly
measure TGF-β activity in the affected joints.

In healthy joints, TGF-β superfamily members con-
trol the balance between ECM synthesis and degradation
[31–33], and are known to promote cartilage formation
and repair [34–36]. Increased OA development in our
TSK mice, however, may support a detrimental effect of
long-term over-active TGF-β in joints, and suggest thera-
pies aimed at increasing TGF-β to improve cartilage repair
may not be suitable for extended periods of time. During
OA development, imbalances in growth factor levels have
been reported; indeed, elevated TGF-β levels are linked
to increased ECM turnover, osteophyte formation and syn-
ovial fibrosis, and therefore promote disease development
[37–39]. In addition, it has been shown that the canoni-
cal receptors for TGF-β shift from an anabolic signalling
(via ALK5–SMAD2/3) to a catabolic pathway (via ALK1–
SMAD1/5/8) [40], thereby increasing cartilage degrada-
tion. Understanding the fine tuning of TGF-β activities,
maybe via Fbn1 levels and localisation, may help us de-
velop better therapeutic strategies to prevent or slow OA
development. However, it is important to note that the role
of TGF-β activity in the described phenotype in TSK mice
has not been assessed in this study.

To further investigate the susceptibility of TSK joints
to soft tissue ossification, we used the non-invasive knee
joint overloading model, in which repetitive knee compres-
sion over 2 weeks leads to increased meniscal and ligament
endochondral ossification [21]. FBN1 mutation in TSK
mice resulted in enhanced articular soft tissue ossification,
confirming increased susceptibility in both spontaneous and
mechanical pathological responses. Mechanical force is of-
ten referred as a regulating factor of musculoskeletal tis-
sues [41–44]. In addition, cartilage compression at physi-
ological levels results in chondrocytes’ anabolic responses
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and are therefore considered protective [44,45]. It has been
demonstrated that mechanical stimulation increases TGF-β
expression and signalling in cartilage and can be used to in-
duce endochondral ossification processes [46,47]. But it is
also clear that excessive or abnormal mechanical stimula-
tion is detrimental. Indeed, these can induce catabolic pro-
cesses in chondrocytes and are linked in vivo to OA devel-
opment [20,48,49]. Although our data in TSKmice support
these facts with increased mechanically-induced endochon-
dral ossification, further studies are required to confirm a
direct role of excessive TGF-β activity in this model. In ad-
dition, Fbn1 microfibrils harbour an RGD integrin-binding
site suggesting a direct effect on mechano-signalling [50–
52]; FBN1 mutations in TSK mice may therefore result in
abnormal mechanotransduction and increased joint pathol-
ogy. Confirmation of the mechanisms by which FBN1 mu-
tation in TSK mice is responsible for increased endochon-
dral ossification in articular tissues in necessary.

In this study, we show that the effects of FBN1 muta-
tion on articular soft tissue ossification are sex specific, af-
fecting mostly males. Sexual dimorphism in FBN1 related
pathologies have been reported before, in a tissue specific
manner. While males reported to be more susceptible to the
cardiovascular events in Marfan [53,54], the skeletal man-
ifestations show more severe symptoms in females [55]. A
study on a Danish cohort reported that risks for some mus-
culoskeletal manifestations such as scoliosis and rheumatic
diseases are significantly increased in women compared to
men [56]. These sex differences may be attributed to a
complex combination of several causes including genetics,
environmental factors, and sex hormones. Estrogen is re-
ported to have protective effects on vascular system [57]
and may be a key player in reduced risk of cardiovascular
diseases in women [58], whilst high levels of testosterone
are linked with cardiac remodelling and aortic enlargement
[59]. In addition, TGF-β signalling pathway plays a crucial
role in pathogenesis of Marfan Syndrome, which may be
regulated differently in males and females. A few studies
have mentioned the potential effects of estrogen on Fbn1
expression and deposition [60,61], which may contribute
to some of these sex differences. FBN1 associated joint
pathologies, such as those described in this study, however,
have not yet been investigated and their potential sex dif-
ferences unknown. Although this study reports important
differences between male and female mice, in depth exper-
imental studies into the contributions of sex hormones such
as estrogen in our reported sexual dimorphism are still re-
quired.

In parallel, joint pathology such as OA develop-
ment does show a clear sex effect, mostly linked to
menopause; indeed, women show higher incidence of OA
after menopause [62,63], whilst ovariectomised female
mice showed increased cartilage damage [64,65]. In con-
trast, young virgin mice show relative protection to OA de-
velopment compared to their male counterparts, suggest-

ing a potential protective effect of female hormones in joint
pathologies. Unfortunately we were not able to assess OA
development in our female TSK mice due to early elimi-
nation of our colonies due to COVID restrictions. The rel-
ative protection female TSK mice compared to male TSK
on articular soft tissue ossification may include the interac-
tion between TGF-β and estrogen, with some suggestions
of an inhibitory effect of estrogen on TGF-β [66–68]. A
study on TSK mice by Avouac et al., 2020 [69] presented
that estrogens are inhibiting TGF-β induced dermal fibrosis
through estrogen receptor alpha. Along with this, other re-
ports including Matsuda et al., 2001 [70] and Yamamoto et
al., 2002 [71] point out inhibitory effects of 17β-estradiol
on TGF-β through estrogen receptors in vitro. Ito et al.,
2010 [72] showed that estrogen inhibits TGF-β signaling
through the estrogen receptor α which forms a complex
with Smad and the ubiquitin ligase Smurf, resulting in an
estrogen-dependent subsequent degradation of Smad. This
could be one of the factors that females are being protected
from the actions of overactive TGF-β in our TSK female
mice.

However, as our colonies had to be eliminated before
their designated dates due to COVID restrictions, we were
unable to perform any further investigations in our experi-
ments focusing especially on the involvement of TGF-β and
sex hormones. Therefore, this study cannot provide a clear
correlation between TGF-β or sex hormones and increased
joint pathology in the TSKmice. But the results of our study
and the evidences from previous studies indicate that, it is
important to further investigate these possible interactions.
Hence, further in vivo and in vitrowork are needed to better
understand the effects of TGF-β activity, sex dimorphism
and osteoarthritis development, and the underlying cellular
mechanisms.

Conclusions

In summary, we describe for the first time a sex-
specific effect of FBN1 mutation in TSK mice on joint
pathology, especially articular soft tissue ossification, that
may be linked to increased active TGF-β and their interplay
with estrogen inhibitory effects. However, further in vitro
and in vivo experiments are required to confirm this relation
focusing on important regulators and protein expressions.
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