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Abstract

Osteoblast-induced bone formation and osteoclast-mediated bone resorption coordinate the balance of bone remodeling. However,
the exact mechanisms underlying bone remodeling remain unknown. Several post-translational modifications (PTMs), including
glycosylation, ubiquitination, sumoylation, lactylation, and palmitoylation, have been linked to bone remodeling. The core molecules
involved in bone remodeling are widely modified by PTMs. An imbalance between bone resorption and formation is a prerequisite
for osteoporosis. Therefore, targeting bone remodeling by modulating PTMs is a promising strategy for osteoporosis therapy. In this
review we consider the roles of novel PTMs in bone remodeling, which may deepen our understanding of the mechanisms underlying
bone remodeling and may also provide novel treatment targets for osteoporosis.
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Introduction
Bone is a highly dynamic and complex organ that un-

dergoes continuous remodeling throughout the lifespan [1].
Bone remodeling consists of two basic processes, includ-
ing the osteoblast-mediated bone formation and osteoclast-
mediated bone resorption [2]. Osteoblasts produce osteo-
cytes and extracellular matrix, which is further deposited
and mineralized [3]. In contrast, to maintain homeostasis,
osteoclasts dissolve the bone matrix and minerals via se-
creted acids and enzymes [4]. The equilibrium between
these two processes is essential for several physiological
functions, such as maintenance of bone renewal, repair of
bone damage, adaption to various mechanical stresses, and
systemic mineral homeostasis [5].

Dysregulation of bone remodeling is invloved in vari-
ous bone-related diseases, such as arthritis, bonemetastasis,
osteopetrosis, and most importantly, osteoporosis [6]. Os-
teoporosis is one of the most common metabolic bone dis-

eases worldwide and is characterized by reduced bone min-
eral density and an increased risk of pathological fractures
[7]. An imbalance between bone resorption and forma-
tion is a prerequisite for osteoporosis [8]. Nevertheless, the
exact molecular mechanisms underlying osteoporosis need
to be further explored. Antiresorptive therapies such as
bisphosphonates and denosumab, and osteoanabolic ther-
apies such as teriparatide are the mainstream pharmacolog-
ical treatment options for osteoporosis [9]. However, these
pharmacological interventions may also lead to serious ad-
verse reactions such as osteonecrosis of the jaw and elec-
trolyte imbalance [9]. Therefore, exploring novel mecha-
nisms of bone remodeling and developing new targets for
osteoporosis with fewer adverse reactions are necessary.

Recent evidence suggests that post-translational mod-
ifications (PTMs) are closely involved in bone remodel-
ing [10]. PTMs are the chemical modifications of specific
amino acid side residues following protein biosynthesis and
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Fig. 1. Brief introduction of the post-translational modifications summarized in this review. GlcNAc, N-acetylglucosamine;
GalNAc, N-acetylgalactosamine; SUMO, small ubiquitin-related modifier; CoA, coenzyme A. Created in BioRender. Wang, Q. (2025)
https://BioRender.com/jeg4msr.

play a predominant role in modulating protein conforma-
tion, activity, stability, localization, and interactions [11].
The chemical compositions of amino acids can be expanded
by modifying or adding functional groups. PTMs are re-
versible processes in which the gain or loss of a protein
modification site is mainly regulated by enzymes known
as writers, readers, and erasers [12]. It was reported that
there are more than 400 types of PTMs, including phos-
phorylation, methylation, glycosylation, acetylation, ubiq-
uitination, and sumoylation [13]. Owing to the rapid de-
velopment of PTM site prediction tools, a range of studies
have focused on the relationship between PTMs and human
diseases. PTMs have been strongly linked to numerous dis-
eases such as cancer, cardiovascular diseases, and bone dis-
eases [14].

There is a huge potential for drug development target-
ing PTM-related enzymes. Therefore, it is worthwhile to
investigate whether PTMs are involved in the pathogene-
sis of osteoporosis. Therefore, this review aimed to sum-
marize the functions of distinct PTM types in osteoporo-
sis. As phosphorylation and methylation have been exten-
sively studied in previous studies and reviews concerning
osteoporosis, this article focuses on other PTMs, including
glycosylation, ubiquitination, sumoylation, lactylation, and
palmitoylation (Fig. 1).

In this review, we identified original studies published
over the past 20 years in the PubMed database. The key-
words (“Post-translational Modifications” OR “glycosyla-
tion” OR “ubiquitination” OR “sumoylation” OR “lactyla-
tion” OR “palmitoylation”) AND (“bone remodeling” OR

“osteoblast” OR “osteoclast” OR “osteoporosis”) were used
for search strategy, and articles relative to our topic are in-
cluded in this review.

Glycosylation in Bone Remodeling
Protein glycosylation involves the covalent attach-

ment of single sugars or glycans to target protein residues.
In some cases, glycosylation is performed via direct ad-
dition of a single nucleotide-activated sugar to the target
residue. This ligation is followed by the sequential attach-
ment of additional nucleotide-activated sugars, eventually
forming glycans in the presence or absence of a lipid car-
rier. N-glycosylation and O-glycosylation are the most fre-
quently documented reactions. N-glycosylation is the con-
nection of a glycan to select asparagine (N) or arginine
(R) residues. O-glycosylation involves the attachment of
a glycan to serine (S), tyrosine (Y), threonine (T), or other
hydroxyl-containing residues. Other less common glycosy-
lation types contain C-glycosylation, S-glycosylation, and
P-glycosylation [15]. The relevant studies are summarized
below.

Direct glycosylation modification of bone marrow
mesenchymal stem cells (BMSCs) or glycosylation mod-
ification of osteogenic-related factors has been confirmed
to play fundamental roles in regulating bone remodeling.
An intriguing study performed direct surface glycosyla-
tion of BMSCs [16]. Induced by the forced expression of
fucosyltransferase VII, glycosylation of BMSCs increased
their homing ability to bone defect sites, providing a novel
biomedical engineering design for bone defect repair [16].
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Other published data have focused on the glycosy-
lation modification of osteogenic-related factors, such as
sclerostin (SOST), bone morphogenetic protein-2 (BMP-
2), dentinmatrix protein 1 (DMP1), osteopontin (OPN), and
osteocalcin (OCN). SOST is a glycoprotein secreted mainly
by osteocytes and inhibits bone formation by inhibitingWnt
signaling [17]. In addition, SOST exerts protective effects
on the cardiovascular system [18]. Although SOST inhi-
bition is regarded as a promising strategy for osteoporosis
intervention, its potential to increase the risk of cardiovas-
cular disease may limit its clinical application [18]. The β4-
N-acetylgalactosaminyltransferase 3 (β4GalNAcT3, coded
by B4GALNT3) transfer N-acetylgalactosamine (GalNAc)
to non-reducing terminal N-acetylglucosamine (GlcNAc)
to form LacdiNAc (LDN) group on N- and O-glycans [19].
It has been shown that β4GalNAcT3 induces the LDN-
glycosylation of SOST in osteocytes, while decreases cir-
culating SOST levels, and thus exerts therapeutic effects
on osteoporosis [20]. One possible explanation for this
mechanism is that the LDN-glycosylated form of SOST
may increase protein degradation or elimination, but this
requires further study. Interestingly, the expression of
B4GALNT3 is seldom detected in the aorta, and interfer-
ence with β4GalNAcT3 has limited effects on SOST levels
in the aorta [20]. These results suggest that the activation
or overexpression of β4GalNAcT3 are novel strategies for
improving bone quality that may avoid the potential cardio-
vascular risks compared with SOST global inhibition. Se-
cretion of BMP-2, an osteogenic promoter, is strictly regu-
lated by N-glycosylation [21]. N-glycosylation at the N135
site helps BMP-2 fold as functional secreted protein to ex-
ert osteoblast differentiation functions [21]. Mutation of
the N135 site leads to the retention of BMP-2 in endoplas-
mic reticulum (ER), which is consistent with elevated ER
stress [21]. Glycosylation of DMP1 at S89 is also essential
for the regulation of bone remodeling and mineralization
and regulates bone repair dependent on BMP-Smad sig-
naling [22,23]. N-glycosylation at the OPN N79 site bidi-
rectionally regulates osteoblasts and osteoclasts [24]. N-
glycosylation at N79 site in OPN promotes osteoclast pro-
liferation and osteoclastogenesis but inhibits osteogenesis
[24]. Further analysis showed that these effects were me-
diated through promoting nuclear factor-κB (NF-κB) sig-
naling pathway [24]. O-glycosylation of OCN at S8 site
prevents plasmin-mediated endoproteolysis, thus promot-
ing its stability in mice [25]. Although the results demon-
strated that the O-glycosylated form of OCN promoted in-
sulin expression, its role in bone remodeling remains un-
known [25]. Collectively, these studies reveal the regula-
tory roles of glycosylation in the functions of osteogenesis-
related factors. However, the upstream events and the exact
regulatory mechanisms of glycosylation during these pro-
cesses remain unknown.

O-GlcNAcylation is a recently discovered post-
translational modification. This refers to the formation

of an O-glycosidic bond between a single GlcNAc and
the hydroxyl group of serine/threonine in the protein [26].
This process is catalyzed by O-GlcNAc transferase (OGT),
and the reverse reaction is mediated by O-GlcNAcase
(OGA) [27]. Through the hexosamine biosynthetic path-
way, glucose is converted into uridine diphosphate N-
acetylglucosamine (UDP-GlcNAc), which serves as a sub-
strate for O-GlcNAcylation modification [28]. Owing to
its dependence on metabolic pathways, O-GlcNAcylation
is regarded as a crucial nutritional sensor [29].

The global protein O-GlcNAcylation levels are grad-
ually increased during osteogenic differentiation [30,31].
Moreover, inhibition of protein O-GlcNAcylation through
either genetic or pharmacological suppression of OGT
leads to impaired osteoblast activity and osteogenic dif-
ferentiation [31,32]. As expected, OGA inhibitors had
the opposite effects [30,32]. More specifically, the os-
teogenic factor runt-related transcription factor 2 (RUNX2)
is modified by O-GlcNAcylation at S32, S33, and S371,
which is essential for its transcriptional activity [30,31,
33]. In addition to RUNX2, other proteins such as micro-
tubule associated serine/threonine kinase family member 4
(MAST4), RNA binding protein ubiquitin-associated pro-
tein 2-like (UBAP2l), CREB-binding protein (CBP), and
TGF-β-activated kinase 1/MAP3K7-binding protein 1 and
2 (TAB1 and TAB2) are also O-GlcNAcylated during os-
teoblast differentiation, but their causal effects on bone
remodeling are still unknown [34]. Although most stud-
ies have reported that protein O-GlcNAcylation promotes
osteogenesis, one study revealed the opposite effect dur-
ing the osteogenic differentiation of periodontal ligament
stem cells (PDLCs) [35]. At high glucose levels, OGT in-
duced the Toll-like receptor 4 (TLR4) O-GlcNAcylation,
which inhibited the osteogenic differentiation of PDLCs
[35]. Another study found that BMP-2 induced elevated O-
GlcNAcylation levels and osteogenic differentiation in the
myoblast cell line C2C12 [36]. However, additional sup-
plementation with a high concentration of glucose further
increased O-GlcNAcylation levels, but inhibited the os-
teogenic capability of C2C12 cells, and these effects could
be reversed by an OGT inhibitor [36]. Therefore, the el-
evated O-GlcNAcylation levels induced by pathological
stimuli may inhibit osteoblast differentiation by modulating
other effectors, suggesting complex regulatory roles for O-
GlcNAcylation modification. Moreover, these results are
also in accordance with the O-GlcNAcylation optimal zone
hypothesis, in which the optimal protein O-GlcNAcylation
levels as well as the coordination between OGT and OGA
activity are essential in normal cellular functions [26].

The role of O-GlcNAcylation in osteoclastogenesis
is complex. During macrophage colony-stimulating factor
(M-CSF)- and receptor activator of nuclear factor-kappa B
ligand (RANKL)-induced osteoclast differentiation, global
protein O-GlcNAcylation gradually increases until 48 h
and then steadily decreases over time, suggesting a tem-
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Table 1. Roles of protein glycosylation in bone remodeling.
Cell line Enzyme Target Effect Mechanism Reference

Saos-2 β4GalNAcT3 SOST Enhances bone mass
β4GalNAcT3 increases LDN-glycosylated
SOST levels

[20]

MC3T3-E1 - BMP-2 Promotes osteoblast differentiation
BMP-2 N-glycosylation at N135 site is
essential in protein folding and function

[21]

Primary osteoblast - DMP1 Promotes osteoblast differentiation
DMP1 glycosylation of at S89 is essential
in protein function

[22]

MC3T3-E1,
RAW264.7

- OPN
Inhibits osteoblast differentiation,
promotes osteoclast differentiation

OPN glycosylation of at N79 promotes NF
-κB nuclear translocation

[24]

Primary osteoblast - OCN Promotes osteoblast differentiation
OCN glycosylation of at S8 increases its
stability

[25]

MC3T3-E1 OGT - Promotes osteoblast differentiation - [32]
MC3T3-E1 OGA Inhibits osteoblast differentiation - [32]

Primary BMSCs - RUNX2 Promotes osteoblast differentiation
RUNX2 glycosylation of at S32, S33,
and S371 is essential for its transcriptional
activity

[31]

Primary PDLCs OGT TLR4 Inhibits osteoblast differentiation - [35]

Primary BMMs -
p65,
NFATc1

Promotes osteoclast differentiation
RANKL promotes p65 and NFATc1 O-
GlcNAcylation and nuclear translocation

[37]

Primary BMMs - NUP153 Promotes osteoclast differentiation
NUP153 O-GlcNAcylation promotes
MYC nuclear translocation and
transcriptional activity

[38]

BMSCs, bone marrow mesenchymal stem cells; PDLCs, periodontal ligament stem cells; OGT, O-GlcNAc transferase; OGA, O-
GlcNAcase; SOST, sclerostin; BMP-2, bone morphogenetic protein-2; DMP1, dentin matrix protein 1; OPN, osteopontin; OCN, os-
teocalcin; TLR4, Toll-like receptor 4; NFATc1, nuclear factor of activated T cells 1; NUP153, nuclear pore protein nucleoporin 153; LDN,
LacdiNAc; RANKL, receptor activator of nuclear factor-kappa B ligand; NF-κB, nuclear factor-κB; RUNX2, runt-related transcription
factor 2; BMMs, bone marrow-derived macrophages.

porally dynamic change in O-GlcNAcylation during osteo-
clastogenesis [37,38]. Indeed, protein O-GlcNAcylation
promotes immature osteoclast differentiation at the early
stages of osteoclastogenesis [38]. Conditional knockout
of OGT in osteoclast precursors significantly improves
bone loss in inflammatory and non-inflammatory bone loss
[38,39]. Mechanistically, RANKL induces NF-κB p65
and nuclear factor of activated T cells 1 (NFATc1) O-
GlcNAcylation and nuclear translocation [37,39]. In ad-
dition, the nuclear pore protein nucleoporin 153 (NUP153)
is O-GlcNAcylated during the early stage of osteoclastoge-
nesis, which promotes the nuclear translocation and tran-
scriptional activity of MYC [38]. However, a decrease in
O-GlcNAcylation levels is essential for late-stage osteo-
clastogenesis. The OGA inhibitor thiamet-G impairs the
number of multinucleated mature osteoclasts without af-
fecting immature osteoclast precursors at the lates stage of
osteoclastogenesis [38]. However, the exact mechanism
by which decreased O-GlcNAcylation regulates osteoclast
maturation remains largely unknown. Owing to the compli-
cated roles of O-GlcNAcylation in bone remodeling, simply
interfering with the overall O-GlcNAcylation levels may
lead to unexpected confounding effects. It has been specu-
lated that the modulation of O-GlcNAcylation levels in cer-
tain cell subtypes or even in cells at certain developmental

stages may achieve ideal therapeutic effects. In addition,
energy metabolism plays a central role in regulating bone
remodeling, and it is unclear whether O-GlcNAcylation
modification, as a nutritional sensor, is involved in this pro-
cess [40]. Further studies are required to answer these ques-
tions. The roles of protein glycosylation in bone remodeling
are listed in Table 1 (Ref. [20–22,24,25,31,32,35,37,38]).

Ubiquitination in Bone Remodeling
Ubiquitin is a highly conserved protein comprising

76 amino acids [41]. Protein ubiquitination is a dynamic
PTM in which ubiquitin is added to a substrate protein [42].
Briefly, ubiquitination is catalyzed by several enzymes,
including E1 ubiquitin-activating enzymes, E2 ubiquitin-
conjugating enzymes, and E3 ubiquitin ligases [43]. Un-
der the action of these cascade reactions, a bond is formed
between the COOH-terminal glycine of ubiquitin and the
lysine (K) residue of the substrate protein [44]. Moreover,
ubiquitin can be conjugated with other ubiquitin molecules
through their lysine residues (K6, K11, K27, K29, K33,
K48, and K63) or the N-terminal methionine residue (M1),
forming highly dynamic ubiquitin chains, also known as
ubiquitin codes [42]. According to the linking pattern of
ubiquitin, ubiquitination can be classified as monoubiqui-
tylation, multi-monoubiquitylation, homotypic polyubiqui-

https://www.ecmjournal.org/
https://www.ecmjournal.org/
https://doi.org/10.22203/eCM.v052a08


118
w
w
w.ecm

journal.org

European
C
ellsand

M
aterialsVol.52

2025
(pages114–131)D

O
I:10.22203/eCM

.v052a08

Table 2. Role of protein ubiquitination in bone homeostasis and osteoporosis.
Cell line Enzyme Target Effect Mechanism Reference

C2C12, 2T3 Smurf1 RUNX2 Inhibits osteoblast differentiation Smurf1 mediates RUNX2 ubiquitination and degradation [50]
C3H10T1/2, primary osteoblast RNF138 RUNX2 Inhibits osteoblast differentiation RNF138 mediates RUNX2 ubiquitination and degradation [51]
hPDLSCs TRIM16 CHIP, RUNX2 Promotes osteoblast differentiation TRIM16 inhibits CHIP-induced RUNX2 ubiquitination and degradation [52]
C3H10T1/2 WWP2 RUNX2 Promotes osteoblast differentiation WWP2 promotes RUNX2 mono-ubiquitination and transactivation [56]
C3H10T1/2, primary osteoblast HAUSP RUNX2 Promotes osteoblast differentiation HAUSP prevents RUNX2 from ubiquitination and degradation [57]
Primary BMSCs USP26 β-catenin Promotes osteoblast differentiation USP26 interacts and stabilizes β-catenin [58]
Primary osteoblast USP8 Fzd5, Wnt/β-catenin Promotes osteoblast differentiation USP8 activates Wnt/β-catenin signaling through preventing Fzd5 degradation [59]
Primary osteoblast USP15 β-catenin Promotes osteoblast differentiation β-catenin phosphorylation by MEKK2 at S675 recruits USP15 to stabilize β-catenin [62]
MC3T3 USP7 YAP1, Wnt/β-catenin Promotes osteoblast differentiation USP7 deubiquitinates and stabilizes YAP1 and further promotes Wnt/β-catenin signaling [63]
C3H10T1/2, ST2 USP7 Axin, Wnt/β-catenin Inhibits osteoblast differentiation USP7 stabilizes Axin and promotes β-catenin degradation [64]
C2C12 USP4 Dvl, Wnt/β-catenin Inhibits osteoblast differentiation USP4 inhibits Wnt/β-catenin signaling through deubiquitinating Dvl [61]
C3H10T1/2, BMSCs β-TrCP Wnt/β-catenin Inhibits osteoblast differentiation β-TrCP mediated ubiquitination and degradation of β-catenin [65]
MSCs Smurf1, Smurf2 Wnt/β-catenin Inhibits osteoblast differentiation Smurf1 and Smurf2 mediates RUNX2 ubiquitination and degradation [66]
RAW264.7, BMMs RNF146 Axin, Wnt/β-catenin Promotes osteoclast differentiation RNF146 promotes the ubiquitination and degradation of Axin, thus stabilize β-catenin [67]

MLO-Y4, MC3T3-E1 USP10 p53
Promotes senescence of osteocytes
and osteoblasts

USP10 deubiquitinates and stabilizes p53 [80]

MC3T3-E1 MDM2 p53 Inhibits osteoblast senescence MDM2 induces p53 ubiquitination [83]

hFOB1.19, primary osteoblast DCAF1 Nrf2
Dampens the anti-oxidative stress
ability of osteoblasts

DCAF1 promotes Nrf2 degradation [90]

C2C12 Smurf1 Smad1/5 Inhibits osteoblast differentiation Smurf1 mediates Smad1/5 degradation [92]

Primary osteoblast and BMMs Smurf2 Smad3 Inhibits osteoclast differentiation
Smurf2 induces monoubiquitination of Smad3, interfering with Smad3-VDR interaction
and RANKL expression

[96]

Primary BMMs c-Cbl TRAF6 Inhibits osteoclast differentiation c-Cbl promotes TRAF6 degradation, thus suppressing NF-κB signaling [71]
Primary BMMs USP7 TRAF6 Inhibits osteoclast differentiation USP7 impairs the K63-linked polyubiquitination of TRAF6 [74]
Primary BMMs TANK TRAF6 Inhibits osteoclast differentiation TANK inhibits TRAF6 ubiquitination and NF-κB signaling [75]
RAW264.7, primary BMMs USP15 IκBα Inhibits osteoclast differentiation USP15 deubiquitinates and stabilizes IκBα [76]
Primary BMMs USP26 IκBα Inhibits osteoclast differentiation USP26 deubiquitinates and stabilizes IκBα [58]
RAW264.7, primary BMMs USP34 IκBα Inhibits osteoclast differentiation USP34 deubiquitinates and stabilizes IκBα [77]
Primary BMSCs CDC20 p65 Promotes osteoblast differentiation CDC20 promotes the ubiquitination and degradation of p65 [78]
Primary BMSCs Smurf1 JunB Inhibits osteoblast differentiation Smurf1 induces the ubiquitination and degradation of JunB [98]
Primary BMSCs WWP1 JunB Inhibits osteoblast differentiation WWP1 induces the ubiquitination and degradation of JunB [99]
Primary BMSCs Itch JunB Inhibits osteoblast differentiation Itch induces the ubiquitination and degradation of JunB [100]
RAW264.7 VHL NFATc1 Inhibits osteoclast differentiation VHL promotes the ubiquitination and degradation of NFATc1 [101]
RAW-D Cullin3 NFATc1 Inhibits osteoclast differentiation Cullin3 promotes the ubiquitination and degradation of NFATc1 [102]
Primary BMMs Cbl-b NFATc1 Inhibits olast differentiasteoction Cbl-b promotes the ubiquitination and degradation of NFATc1 [103]

Smurf1, Smad ubiquitylation regulatory factor 1; RNF138, RING finger protein 138; TRIM16, tripartite motif 16; WWP2, WW domain-containing E3 ubiquitin protein ligase 2; USPs, ubiquitin-specific proteases;
β-TrCP, β-transducin repeat-containing protein; c-Cbl, casitas B-lineage lymphoma; TANK, TRAF family member-associated NF-κB activator; CDC20, coactivator cell division cycle 20; Itch, itchy E3 ubiquitin protein
ligase; VHL, Von Hippel-Lindau tumor suppressor; CHIP, carboxy-terminus of Hsc70 interacting protein; Fzd5, frizzled 5; Dvl, Dishevelled; Nrf2, nuclear factor erythroid 2-related factor 2; TRAF6, TNF receptor-
associated factor 6; MEKK2, mitogen-activated protein kinase kinase kinase 2; VDR, vitamin D receptor; IκB, inhibitor of κB; Cbl-b, Casitas B lymphoma-b; HAUSP, herpesvirus-associated ubiquitin-specific protease;
YAP1, Yes1 associated transcriptional regulator; DCAF1, DDB1 and CUL4 associated factor 1; WWP1, WW domain containing E3 ubiquitin protein ligase 1; hPDLSC, human periodontal ligament stem cell.
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tylation, heterotypic polyubiquitylation, and atypical ubiq-
uitylation [45]. K48 homotypic polyubiquitylation is the
most abundant of the canonical ubiquitin chain, and enables
protein to be degraded by the 26S proteasome, thus form-
ing the well-known ubiquitin proteasome system (UPS)
[46]. Other ubiquitination patterns are involved in sev-
eral complex cellular functions such as DNA damage re-
sponse, protein trafficking, and autophagy [45]. Deubiqui-
tinating enzymes detach substrate proteins from ubiquitin
[47]. Ubiquitin-specific proteases (USPs) are the largest
and most well-studied family among the deubiquitinating
enzymes [48].

Ubiquitination is an important area of research in the
field of bone remodeling. The overall effects of the UPS
on bone metabolism were revealed using the UPS inhibitor
bortezomib. Bortezomib administration significantly pro-
motes the bone formation inmicewith ovariectomy induced
osteoporosis [49]. Further studies have revealed that the
ubiquitination affects bone remodeling through modulating
several key signalingmolecules during osteogenesis and os-
teoclastogenesis, such as RUNX2, Wnt/β-catenin, and NF-
κB.

The ubiquitination of RUNX2 is regulated by sev-
eral E3 ubiquitin ligases, such as Smad ubiquitylation reg-
ulatory factor 1 (Smurf1) [50], RING finger protein 138
(RNF138) [51], and carboxy-terminus of Hsc70 interact-
ing protein (CHIP) [52]. The overall effects of these
E3 ubiquitin ligases on RUNX2 induce protein ubiqui-
tination and degradation through the UPS, thereby in-
hibiting osteogenic differentiation. Several recent studies
have revealed specific mechanisms that regulate these pro-
cesses. For example, Smurf1 can be modulated by both
post-translational and transcriptional mechanisms. The
phosphorylation of Smurf1 at S148, induced by the en-
ergy sensor AMP-activated protein kinase (AMPK), is
essential for the ubiquitination of RUNX2 [53]. Glu-
cose uptake inhibits AMPK activity, thereby inhibiting
Smurf1-mediated RUNX2 degradation, revealing a com-
plex connection between osteoblast differentiation and glu-
cosemetabolism [54]. Another study revealed that mechan-
ical loading induces nuclear retention of Smurf1 messenger
RNA (mRNA), which impairs Smurf1-mediated RUNX2
degradation and promotes bone formation [55]. This effect
is mediated by the unique paraspeckle structure formed by
the long non-codingRNA (lncRNA) nuclear enriched abun-
dant transcript 1 (NEAT1) [55]. CHIP promotes RUNX2
K48 poly-ubiquitination and degradation [52]. However,
another E3 ubiquitin ligase, tripartite motif 16 (TRIM16)
competes with CHIP to interact with RUNX2, inducing
RUNX2 K63 poly-ubiquitination and protecting RUNX2
from UPS-mediated protein degradation [52]. E3 ubiqui-
tin ligases such as the WW domain-containing E3 ubiquitin
protein ligase 2 (WWP2) also induce RUNX2 monoubiqui-
tination, which increases RUNX2 transactivation instead of
degradation [56]. These examples show that different ubiq-

uitin codes exert diverse effects on substrate proteins. The
ubiquitination and stability of RUNX2 are also regulated by
deubiquitinating enzymes, such as USP7 [57]. Phospho-
rylation of RUNX2 induced by casein kinase 2 (CK2) re-
cruits USP7, which inhibits the ubiquitination and stability
of RUNX2, thus favoring osteogenic differentiation [57].

The ubiquitination modification ofWnt/β-catenin sig-
naling is also important in bone remodeling. USPs regu-
late osteogenic differentiation by directly modulating the
Wnt/β-catenin signaling pathway. For instance, USP26 can
directly interact and stabilize β-catenin, which promotes
osteoblast differentiation and bone formation [58]. USP8
controls the Wnt/β-catenin pathway in osteoblasts through
stabilizing frizzled 5 (Fzd5), a Wnt pathway receptor [59].
Dishevelled (Dvl) is a core regulator of the Wnt/β-catenin
signaling, and the K63-polyubiquitination of Dvl inacti-
vates the destruction complex, leading to β-catenin stabi-
lization and nuclear translocation [60]. USP4 deubiquiti-
nates Dvl, thus inhibiting Wnt/β-catenin pathway during
osteogenesis [61]. Moreover, phosphorylation of β-catenin
at S675 induced by mitogen-activated protein kinase ki-
nase kinase 2 (MEKK2) recruits USP15, which inhibits
UPS-mediated β-catenin degradation and promotes bone
formation [62]. USPs also affect Wnt/β-catenin signaling
through indirect mechanisms. Wang et al. [63] found that
USP7 promotes bone formation by stabilizing Yes1 asso-
ciated transcriptional regulator (YAP1) and further induc-
ing β-catenin nuclear translocation. However, a reverse ef-
fect of USP7 on Wnt/β-catenin pathway was reported by
Ji et al. [64]. In this study, USP7 also inhibited Wnt/β-
catenin pathway during osteogenesis through promoting the
stabilization of Axin1, the scaffolding protein of the β-
catenin degradation complex [64]. It has been speculated
that other mediators determine the substrate specificity of
USP7 in different settings, although no study has been con-
ducted to test this hypothesis. Moreover, the E3 ubiquitin
ligases such as β-transducin repeat-containing protein (β-
TrCP), Smurf1, and Smurf2 mediate inhibitor of nuclear
factor kappa-B kinase subunit beta (IKKβ)-NF-κB-induced
β-catenin suppression, leading to impaired osteogenic dif-
ferentiation [65,66]. In osteoclasts, RANKL-NF-κB sup-
presses the expression of the E3 ubiquitin ligase RNF146,
leading to increased Axin1 stability and impaired Wnt/β-
catenin signaling [67]. These results provide novel insights
into the mechanisms and potential treatment strategies for
inflammation-induced bone loss.

Under inflammatory conditions, canonical activation
of NF-κB signaling is regulated by the E3 ubiquitin ligase
tumor necrosis factor (TNF) receptor-associated factor 6
(TRAF6) [68]. More specifically, TRAF6 cooperates with
the ubiquitin-conjugating enzyme 13 (Ubc13)/ubiquitin-
conjugating enzyme variant 1A (Uev1A) E2 complex to in-
duce K63-polyubiquitin chain synthesis and TRAF6 auto-
ubiquitination [69]. The unique K63-polyubiquitin chains
help the activation of TGF-β-kinase 1 (TAK1) complex
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Fig. 2. Functions of ubiquitin-proteasome system in the regulation of bone homeostasis and osteoporosis. Nrf2, nuclear factor
erythroid 2-related factor 2; NF-κB, nuclear factor-κB; NFATc1, nuclear factor of activated T cells 1; RUNX2, runt-related transcription
factor 2; DUBs, deubiquitinating enzymes. Created in BioRender. Wang, Q. (2025) https://BioRender.com/s4hpstp.

independent of proteasome-mediated protein degradation,
which further phosphorylates IKK and activates NF-κB
[70]. Given the essential role of NF-κB signaling in os-
teoclastogenesis, manipulation of its upstream molecule
TRAF6 may provide novel insights into the treatment of
bone-related diseases. Recent studies have found that
TRAF6 is ubiquitinated and destabilized by several other
E3 ubiquitin ligase, such as casitas B-lineage lymphoma
(c-Cbl) [71], and 14-3-3ζ [72], thereby inhibiting NF-κB
signaling in osteoclasts. Mechanistically, c-Cbl induced
K48-linked polyubiquitination of TRAF6 [71]. However,
the specific ubiquitination pattern that determines the role
of 14-3-3ζ on TRAF6 is still not known. In addition,
deconjugating the K63-linked polyubiquitin chains from
TRAF6 by deubiquitination enzymes, such as cylindro-
matosis (CYLD) [73] and USP7 [74], also inhibits down-
stream NF-κB signaling and osteoclastogenesis. Interest-
ingly, the NF-κB downstream protein itchy E3 ubiqui-
tin protein ligase (Itch) promotes the interaction between
CYLD and TRAF6, which inhibits NF-κB in turn, suggest-
ing a negative feedback loop of Itch-NF-κB signaling in
osteoclasts [73]. Similar to Itch, TRAF family member-
associated NF-κB activator (TANK) also promotes TRAF6

deubiquitination and inhibits NF-κB signaling [75]. How-
ever, it remains unclear whether these effects depend on
other K63-linked specific deubiquitination enzymes. The
NF-κB inhibitor, IκBα is regulated by several USPs, such
as USP15 [76], USP26 [58], and USP34 [77]. These USPs
deubiquitinate and stabilize IκBα, thereby suppressing NF-
κB signaling and osteoclast-mediated bone loss. The ubiq-
uitination of NF-κB signaling is also involved in the os-
teogenic differentiation of BMSCs, although only a few
studies have focused on this field. Study of Du et al. [78]
showed that the E3 ubiquitin ligase anaphase-promoting
complex/cyclosome (APC/C) and its coactivator cell di-
vision cycle 20 (CDC20) facilitate the ubiquitination and
degradation of the NF-κB component p65, promoting os-
teogenic differentiation of BMSCs. Overall, these studies
emphasize the finely-tuned regulation of NF-κB by ubiqui-
tination in bone remodeling, providing a promising thera-
peutic approach for inflammation-related bone loss.

The p53 protein is a transcription factor implicated in
cellular responses to stress and is linked to cellular senes-
cence and apoptosis [79]. It also regulates senescence and
differentiation of osteoblasts and is modulated by protein
ubiquitination. USP10 deubiquitinates and stabilizes p53,
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leading to p53-mediated osteoblast senescence [80]. More-
over, the expression of USP10 is inhibited by estrogen sig-
naling, revealing a potential mechanism of estrogen defi-
ciency in osteoporosis [80]. Moreover, miR-203-3p/PDZ-
linked kinase (PBK) is implicated in senescence of BM-
SCs by inhibiting p53 ubiquitination and degradation [81].
However, the exact mechanism underlying this process re-
mains unclear. Moreover, p53 ubiquitination and degra-
dation are regulated by the oncoprotein MDM2 [82]. The
anti-apoptotic protein BRE promotes osteoblast differentia-
tion throughMDM2-induced p53 ubiquitination and degra-
dation [83].

Nuclear factor erythroid 2-related factor 2 (Nrf2)mod-
ulates transcriptional activation of antioxidant response
genes in response to oxidative stress [84]. However,
Nrf2 interacts with Kelch-like ECH-associated protein 1
(Keap1), which serves as a substrate adaptor for the cullin
3 (CUL3)-RING-box protein 1 (RBX1) E3 ubiquitin lig-
ase complex, mediating the ubiquitination and degradation
of Nrf2 [85]. The Keap1-Nrf2 system is implicated in
bone remodeling and is fine-tuned by the UPS [86]. Sev-
eral pharmacological interventions, such as bitopertin [87],
carnitine [88], and Dendrobium officinale polysaccharides
(DOP) [89] can disrupt the Keap1-Nrf2 interaction, lead-
ing to suppressed Nrf2 ubiquitination and improved bone
quality in osteoporosis. In addition, miR-3175 inhibits Nrf2
ubiquitination and degradation, thus preventing osteoblasts
from dexamethasone-induced oxidative stress and cellular
injury [90].

The polyubiquitination and subsequent degradation
of Smad1/5 are regulated by Smurf1 [91]. In support
of this result, Cao et al. [92] screened and identified
the small molecule compounds A01 and A17 that inhib-
ited Smurf1-induced Smad1/5 degradation and promoted
osteogenic differentiation. In addition, TNF-α facilitates
Smurf1-mediated Smad1 ubiquitination and degradation,
resulting in inflammatory bone loss [93]. These effects can
be reversed by melatonin, implying its strong potential in
the treatment of osteoporosis [93]. Moreover, transmem-
brane anterior posterior transformation 1 (TAPT1) [94] and
LIM and cysteine-rich domains 1 (LMCD1) [95] have been
identified as novel upstream modulators that promote and
inhibit Sumrf1-induced Smad1/5 ubiquitination, respec-
tively. Collectively, these results suggest that Smurf1 acts
as a potential suppressor of osteogenic differentiation by
modulating Smad1/5. As a close homologue of Smurf1,
Smurf2 has also been identified as an osteogenic differen-
tiation suppressor [96]. However, Smurf2 also exerts non-
redundant effects by inhibiting osteoblast RANKL produc-
tion and osteoblast-induced osteoclastogenesis [96]. Mech-
anistically, Smurf2 mediates Smad3 monoubiquitination in
osteoblasts, which disrupts the Smad3-vitamin D receptor
(VDR) interaction, leading to decreased RANKL expres-
sion and impaired osteoblast-osteoclast coupling [96]. As a
result, Smurf2 knockout mice displayed the opposite bone

phenotype compared to Smurf1 knockout mice, i.e., the for-
mer exhibited osteopenia, while the latter showed increased
bone mass [96,97].

JunB has been identified as a novel regulator of os-
teoblasts, and its ubiquitination is regulated by several ubiq-
uitin E3 ligases such as Smurf1 [98], WW domain con-
taining E3 ubiquitin protein ligase 1 (WWP1) [99], and
Itch [100]. These ubiquitin E3 ligases demonstrated sim-
ilar effects on JunB, i.e., inducing the ubiquitination and
degradation of JunB and impairing the osteogenic differen-
tiation of BMSCs. NFATc1, an essential mediator of os-
teoclast differentiation, is also regulated by ubiquitination
modification. Jumonji C domain-containing 5 (JMJD5)
facilitates the interaction between NFATc1 and the Von
Hippel-Lindau tumor suppressor (VHL) E3 ligase, thus
promoting the ubiquitination and degradation of NFATc1
[101]. Kelch repeat and BTB domain-containing protein 11
(KBTBD11) interacts with CUL3 to promote NFATc1 ubiq-
uitination [102]. Moreover, Casitas B lymphoma-b (Cbl-b)
promoted NFATc1 ubiquitination and impaired osteoclas-
togenesis [103]. The functions of protein ubiquitination in
bone remodeling are illustrated in Fig. 2 and Table 2 (Ref.
[50–52,56–59,61–67,71,74–78,80,83,90,92,96,98–103]).

Sumoylation in Bone Remodeling
Sumoylation has been identified over the last two

decades as a post-translational modification. Small
ubiquitin-related modifier (SUMO), an analog of ubiqui-
tin, is a tag protein approximately 100 amino acids long
[104]. Five SUMO isoforms (i.e., SUMO1-5) have been
identified in mammals [105]. Similar to protein ubiquiti-
nation, sumoylation requires a three-enzyme cascade, fol-
lowed by ligation to the lysine residue of the substrate
protein [106]. However, the precursor SUMO must first
be converted into mature SUMO by SUMO-specific pro-
tease [107]. Briefly, sumoylation involves sequential pro-
cesses, including SUMO maturation catalyzed by SUMO-
specific proteases (SENPs); SUMO activation induced by
the SUMO1 activating enzyme subunit 1 (SAE1)/SAE2
complex, i.e., the E1-activating enzyme, and SUMO conju-
gation by the E2-conjugation enzyme ubiquitin carrier pro-
tein 9 (Ubc9), E3 ligases facilitate the specificity and effi-
ciency of sumoylation, and SENPs also mediate the decon-
jugation of SUMO from target proteins [106]. Sumoylation
can change the fate of substrate proteins and broadly reg-
ulate biological and pathological processes such as DNA
replication and repair, cell cycle progression, and cell
metabolism [108]. Sumoylation has also been implicated
in the regulation of bone remodeling.

Androgen and androgen receptor (AR) have been im-
plicated in maintaining bone homeostasis in males [109].
The sumoylation of AR at residues K381 andK500 is essen-
tial for its protein activity, including the regulation of sperm
maturation [110] and bone development [111]. Male mice
with mutant AR sumoylation sites (i.e., K381 and K500)
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display an osteoporotic phenotype [111]. A study showed
that AR sumoylation affects its interaction with chromatin
and target gene selection in prostate cancer cells [112].
However, whether these mechanisms apply to the cellular
events during osteogenic differentiation remains unknown.

Studies have identified Smad4 as an important SUMO
substrate in osteoblasts [113–115]. Smad4, as the vital
mediator of transforming growth factor-β (TGF-β)/BMP
signaling, participates in the formation of the Smad com-
plex, and promotes the transcription of the osteoblast
differentiation-related genes [116]. The E2-conjugation en-
zyme Ubc9 promotes Smad4 sumoylation, which increases
its stability and nuclear translocation in osteoblasts [113].
Moreover, Smad4 sumoylation enhanced the resistance of
osteoblasts to oxidative stress-induced cell injury [114].
These results are consistent with those of early studies in
other settings, in which sumoylation modification showed
positive regulatory roles in the protein functions of Smad4
[117]. However, another study revealed the opposite role
of Ubc9-induced Smad4 sumoylation in osteoblasts [115].
Sumoylation of Smad4 at K158 inhibited its transcriptional
activity without affecting protein stability or cellular local-
ization [115]. One possible explanation for these distinct
results is that the diverse Smad4 sumoylation modification
sites may have different functions. The different osteoblast
cell lines used in these studies may also account for these
discrepancies. However, current evidence is not sufficient
to confirm these views and needs to be further explored.

The sumoylation of E3 ligase protein inhibitor of acti-
vated STAT-xβ (PIASxβ) increased the transcriptional ac-
tivity of osterix in osteoblasts [118]. However, owing to
the lack of the sumoylation motif in osterix, the above-
mentioned mechanism seems to be indirect. Another E3
ligase, PIAS3, increases Smurf1 sumoylation and activity,
thereby impairing BMP-2-induced osteogenic differentia-
tion [119]. This study provides an example of the inter-
play between ubiquitination and sumoylation in the regula-
tion of bone remodeling. Peroxisome proliferator-activated
receptor γ (PPARγ) is the nuclear receptor that controls
the differentiation of BMSCs [120]. The activation of
PPARγ promotes the differentiation to adipocytes, but in-
hibits osteogenic differentiation [121]. As early as 2004,
Yamashita et al. [122] found that PPARγ2 can by modified
by sumoylation at the K107 site, which impairs its transacti-
vating function. However, the pathological roles of PPARγ
sumoylation in bone remodeling have been only recently
discovered [123,124]. Growth and differentiation factor 11
(GDF11) promotes PPARγ sumoylation and facilitates os-
teogenic differentiation [123]. However, GDF11 levels are
regulated by ageing and rosiglitazone (the PPARγ agonist
approved for diabetes treatment), suggesting a novel mech-
anism for senile osteoporosis and the rosiglitazone-related
bone loss [123]. In addition, glucocorticoids increased
the expression of SUMO-specific protease SENP3, which
deSUMOylated PPARγ2 at K107, leading to impaired os-

teogenic differentiation and glucocorticoids-induced osteo-
porosis [124].

Another study found a distinctive role for SENP3 in
promoting osteogenic differentiation of MSCs through the
epigenetic regulation of distal-less homeobox 3 (DLX3), an
essential transcription factor for osteogenic differentiation
[125]. More specifically, SENP3 induces the desumoy-
lation of RB-binding protein 5 (RbBP5), which promotes
the activity of the MLL1/MLL2 complex as a methyltrans-
ferase at H3K4 and elevates the recruitment of active RNA
polymerase II on DLX3 [125]. SENP3 also suppresses
the differentiation of osteoclasts [126]. SENP3 deSUMOy-
lates interferon regulatory factor 8 (IRF8) at the K310 site,
which sustains the inhibitory roles of IRF8 on NFATc1 ex-
pression and osteoclastogenesis [126]. Another deSUMOy-
lase, SENP6, inhibits senescence and apoptosis of osteo-
chondroprogenitors (OCPs), thereby maintaining normal
skeletal development [127]. SENP6 deSUMOylates and
stabilizes SUMO ligase E3 tripartite motif-containing pro-
tein 28 (TRIM28), inhibiting p53-mediated OCPs ageing
[127]. Overall, these studies revealed that sumoylation reg-
ulates bone remodeling through various mechanisms, such
as modulation of protein stability, subcellular localization,
transcription regulation, and enzyme activity. These results
suggest a complex regulatory role of sumoylation in bone
remodeling under both normal and pathological conditions.

Lactylation in Bone Remodeling
First reported in 2019, lactylation is a recently discov-

ered protein modification related to cell metabolism [128].
Certain conditions, such as hypoxia and cellular glycol-
ysis promote the formation of endogenous lactate [129].
Lactylation occurs when L- or D-lactyl is transferred to ly-
sine residues of various proteins [130]. Lactylation mod-
ifications were initially discovered to act on histones and
regulate gene transcription levels [128]. Dysregulated his-
tone modifications impair gene transcription and play cru-
cial roles in the onset and development of various diseases
[131]. Recently, non-histone proteins involved in various
biological processes, such as modulating protein activity
and interactions, have also been found to be substrates of
lactylation modifications [132]. Histone and non-histone
protein lactylation further indicate intricate connections be-
tween energy metabolism and diseases.

Considering the close relationship between energy
metabolism and bone remodeling, protein lactylation is
speculated to be involved in the regulation of bone home-
ostasis [133]. Lactate levels gradually increase during os-
teoblast differentiation [134]. Lactate dehydrogenase A
(LDHA) promotes cellular lactate levels and the lactylation
of histone 3 on lysine residue 18 (H3K18la) of the JunB pro-
moter, thereby increasing JunB expression and osteogenic
differentiation [134]. Another study conducted byWu et al.
[135] revealed a similar role for lactylation in bone. Lactate
secreted by endothelial cells promotes H3K18la expression
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in BMSCs, which in turn increases osteogenic differentia-
tion [135]. These results suggest that histone lactation plays
a positive role in bone formation and is a promising strategy
for the treatment of osteoporosis.

Lactylation of non-histone proteins is also involved in
bone remodeling. For instance, αB-crystallin (CRYAB) in-
teracts with and stabilizes ferritin heavy chain 1 (FTH1) in
a lactylation-dependent manner [136]. FTH1 further sup-
presses ferroptosis and promotes osteogenic differentiation
of BMSCs [136]. However, the specific writer protein me-
diating FTH1 lactylation remains unknown. In addition,
a recent study found that proanthocyanidins promote the
lactylation of RUNX2 at K176, which prevented the ubiq-
uitination and degradation of RUNX2, thereby promoting
the osteogenic differentiation of stem cells [137]. In con-
clusion, protein lactylation is a novel PTM pattern discov-
ered in recent years, and only a few studies focused on the
roles of lactylation in the bone. However, based on the cur-
rent studies, this field shows promising prospects that merit
further exploration.

Palmitoylation in Bone Remodeling
Protein palmitoylation is a reversible lipid modifi-

cation that has been extensively studied in hundreds of
mammalian proteins [138]. According to different connec-
tion methods, protein palmitoylation can be classified as
S-palmitoylation, N-palmitoylation, and O-palmitoylation
[139]. S-palmitoylation, the most common modification, is
achieved by generating a thioester bond between palmitic
acid and a cysteine residue [140]. Protein S-palmitoylation
is catalyzed by the zinc finger DHHC-type containing (ZD-
HHC) protein family, whereas de-palmitoylation is me-
diated by Acyl protein thioesterase [141]. Functionally,
palmitoylation enhances the hydrophobicity of substrate
proteins, thereby affecting protein interactions, membrane
structures, and protein localization [142]. Palmitoylation
also determines protein structure, assembly, maturation,
and stability [138].

Several recent studies have indicated the potential
role of protein palmitoylation in bone remodeling. The
cyclic adenosine monophosphate (cAMP)/protein kinase A
(PKA)/cAMP response element binding protein (CREB)
signaling pathway is involved in promoting osteogenic dif-
ferentiation [143]. PKA-induced CREB phosphorylation
mediates CREB nuclear translocation and downstream os-
teogenic gene expression [143]. However, ZDHHC16 pro-
motes CREB palmitoylation while inhibiting its phospho-
rylation, thereby suppressing the osteogenic differentiation
of stem cells [144,145]. However, another palmitoyl acyl-
transferase, ZDHHC13, is positively linked to bone devel-
opment. A nonsense mutation in ZDHHC13 in mice re-
sults in an osteoporosis-like phenotype [146]. ZDHHC13
induces palmitoylation and nuclear translocation of mem-
brane type 1 matrix metalloproteinase (MT1-MMP), which
regulates endochondral bone formation [147]. The palmi-

toylation inhibitor 2-bromopalmitic acid (2-BP) inhibited
both osteogenic and osteoclast differentiation [148,149].
Interestingly, it seems that the inhibitory effects of 2-BP on
osteoclast differentiation overwhelmed its inhibitory role
in osteogenic differentiation, therefore it exerted an over-
all effect to delay bone loss in ovariectomy-induced osteo-
porosis [149]. Owing to the non-selective and off-target
effects of 2-BP, the extent to which its regulatory role in
bone is achieved by inhibiting protein palmitoylation re-
mains largely unknown.

Future Perspectives
A growing number of studies have focused on the role

of PTMs in regulating bone remodeling, which deepens our
understanding of bone biology. These results provide a
foundation for future clinical applications. Osteoporosis is
characterized by impaired osteogenic and excessive osteo-
clast differentiation. PTM modulation is also a promising
target for the treatment of osteoporosis because of its es-
sential regulatory role in bone remodeling. The potential
efficacy of several specific PTM modulators for the treat-
ment of osteoporosis has been evaluated in recent studies.

The UPS inhibitor bortezomib, as an example, has
been approved for treating multiple myeloma and improv-
ing osteolytic bone lesions in patients, which inspires fur-
ther research on the correlation between the UPS and bone
remodeling and suggests a potential treatment effect on
osteoporosis [150]. Indeed, bortezomib significantly im-
proved bone loss induced by ovariectomy [49]. Other UPS
inhibitors, such as MG132 and ixazomib also favor bone
formation, but these effects have not been verified in in vivo
studies [151,152].

Targeting O-GlcNAcylation is another potent strategy
for treating osteoclast-mediated bone loss. However, con-
sidering the dynamic roles of O-GlcNAcylation at differ-
ent stages of osteoclast differentiation, opposing interven-
tions may be utilized at different stages of the disease [38].
Therefore, there are several questions regarding this issue:
(i) is it possible to determine the optimal timing for different
interventions during disease progression? (ii) Is it possible
to identify feasible biomarkers that reflect dynamic roles
of O-GlcNAcylation in osteoclast? And (iii) is it possible
to determine the core mechanisms of the dynamic roles of
O-GlcNAcylation in osteoclast? Further studies address-
ing these issues may help in the selection of an appropriate
treatment method for osteoporosis.

Several multi-target drugs also improve bone mass
and quality in osteoporosis by modulating PTMs. Be-
raprost is a prostaglandin I2 (PGI2) analogue used to treat
peripheral arterial diseases [153]. A recent study found
that beraprost improves osteoporosis though inhibiting the
E3 ubiquitin ligase neural precursor cell expressed devel-
opmentally downregulated 4 (Nedd4)-mediated RUNX2
ubiquitination and degradation [154]. Lansoprazole, a pro-
ton pump inhibitor, upregulates the K63-linked polyubiqui-
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tination of TRAF6, which promotes RUNX2-mediated os-
teoblast differentiation by activating non-canonical BMP-
TAK1-p38 signaling [155]. An in vivo study further empha-
sized the promoting effect of lansoprazole on bone healing
during bone fractures [155]. Natural compounds can also
ameliorate bone loss during osteoporosis by modulating
PTMs. DOPs are biologically active compounds that ex-
tracted from the traditional Chinese medicine Dendrobium
officinale [156]. DOP can improve osteoporosis by sup-
pressing Nrf2-Keap1 interaction and Nrf2 ubiquitination
[89]. Higenamine is the active compound isolated from the
traditional Chinese herbal medicineAconitum carmichaelii,
and has been used in cardiovascular diseases due to its β re-
ceptor agonist activity [157]. A recent study found that hi-
genamine improves estrogen deficiency and ageing-related
osteoporosis by inhibiting Smad4 ubiquitination and degra-
dation [158]. Overall, these multitarget drugs and active
compounds represent potentially innovative therapies for
osteoporosis. However, future studies are also needed to
address the following issues: (i) owing to the relatively low
specificity and multiple targets of these drugs, their side ef-
fects should also be carefully explored; (ii) the efficacy and
side effects of these drugs should be compared with the cur-
rent osteoporosis treatments; (iii) chemical modification-
based methods may help improve the bioavailability and
therapeutic activity of natural compounds.

Proteins and stem cells modified by certain PTMsmay
exert stronger antiosteoporotic effects, offering promising
prospects for bioengineering applications. Freire et al.
[159] initially developed a strategy for immobilizing anti-
BMP-2 antibodies on an absorbable collagen sponge to
capture endogenous BMP-2 and exert osteogenic function,
which was termed as antibody-mediated bone regeneration.
Another study found that the sialylation of anti-BMP-2 IgG
enhanced its pro-osteogenic capacity while avoiding the po-
tential side effects such as pro-osteoclastogenic effects and
inflammatory infiltration induced by the Fc-Fc fragment re-
ceptor interaction [160]. Moreover, surface glycosylation
modification increased the homing ability of BMSCs to-
wards bone defects, providing novel insights into stem cell-
based therapy for bone diseases [16]. Hydrogel serving as
drug-loading systems can encapsulate agents that modulate
PTMs to exert anti-osteoporotic and bone-regeneration ef-
fects [161]. These agents comprise PTM inhibitors or ago-
nists, lipid nanoparticles containing PTM enzyme mRNA,
and stem cells modified by PTMs [58,162].

Although many experimental studies have explored
the roles of PTMs in bone remodeling, only a few have fo-
cused on the potential utilization of protein PTMs as dis-
ease biomarkers for osteoporosis. For instance, Yang et al.
[163] used mass-spectrometry-based proteomics to identify
differentially ubiquitinated sites and proteins in the whole
blood of patients with ostmenopausal osteoporosis. How-
ever, few studies have explored the correlation between
PTM protein levels and severity, risk of complications, and

prognosis of osteoporosis. The potential utilization of PTM
protein levels as novel bone turnover markers needs to be
studied further.

Another intriguing topic is the interactions among di-
verse PTMs during bone remodeling. Indeed, the crosstalk
between multiple PTMs may result in synergistic or antag-
onistic effects on protein biological functions [164]. These
interactions of PTMs form a complex regulatory network
that affects bone homeostasis. Among these PTM inter-
actions, the ubiquitination-phosphorylation interaction is
the most widely studied and comprises several paradigms.
(i) Protein phosphorylation antagonizes its ubiquitination.
CK2 phosphorylates RUNX2 at T340, S354, and S387,
which further inhibiting UPS-mediated protein degradation
by recruiting USP7 [57]. (ii) Protein phosphorylation pro-
motes ubiquitination. For example, IKKβ phosphorylates
β-catenin at S33, S37, and S45, which favors β-TrCP-
mediated β-catenin ubiquitination and degradation, leading
to inhibited osteogenic differentiation [65]. These results
indicate that the phosphorylation of target proteins may af-
fect PTMs through modulating protein-protein interactions.
(iii) Phosphorylation of E3 ubiquitin ligases and USPs may
determine their enzymatic activities. For instance, Smurf1
phosphorylation at S148 byAMPK is essential for its ability
to target RUNX2 for degradation [53]. In osteocytes, CK2
phosphorylates USP4, which further deubiquitinates and
stabilizes sirtuin 1 to modulate SOST expression [165]. In
addition to protein phosphorylation, citrullination can also
antagonize UPS-mediated protein degradation. As seen in
study of Kim et al. [166], citrullination of RUNX2 at argi-
nine (R) 381 protects it from UPS-mediated degradation,
although the specific mechanism remains unknown.

Conclusions
This review highlights the roles of several novel PTMs

including glycosylation, ubiquitination, sumoylation, lacty-
lation, and palmitoylation, in the regulation of bone re-
modeling. In particular, several core molecules of os-
teoblast differentiation signaling such as Wnt/β-catenin,
BMP/Smad, RUNX2, SOST, osterix, and those of osteo-
clast differentiation signaling NF-κB and NFATc1 have
been found to be widely modified by post-translational
mechanisms. These PTMs exert their roles through mod-
ulating protein functions, such as stability, activity, sub-
cellular localization, and interaction. These results deepen
our understanding of the mechanisms underlying bone re-
modeling and may provide novel treatment targets for bone
diseases, especially osteoporosis. However, it should be
pointed out that current studies have largely explored the
roles of PTMs on bone remodeling from a laboratory per-
spective, whereas clinical studies on this issue are still
scarce. Future studies that link PTMs with clinical param-
eters of osteoporosis may favor the potential utilization of
PTMs in clinical settings. In addition, post-translationally
modified proteins can be delivered through bone tissue en-
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gineering and targeted drug delivery strategies, thereby ex-
erting functional effects and improving bone remodeling.
Several natural medicines can improve bone loss during
osteoporosis by modulating PTMs. However, owing to
the low bioavailability and multiple targets of these natural
products, further studies are required. Finally, it should be
noted that this review, as a narrative review, is potentially
subject to selection bias. This limitation may be addressed
in future studies by conducting systematic reviews with
strict inclusion and exclusion criteria and rigorous quality
assessments.
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tein; CDC20, coactivator cell division cycle 20; CHIP,
carboxy-terminus of Hsc70 interacting protein; CK2, ca-
sein kinase 2; CREB, cAMP response element binding
protein; CRYAB, αB-crystallin; CYLD, cylindromatosis;
DMP1, dentin matrix protein 1; DOP, Dendrobium of-
ficinale polysaccharides; DLX3, distal-less homeobox 3;
Dvl, Dishevelled; FTH1, ferritin heavy chain 1; Fzd5,
frizzled 5; GlcNAc, N-acetylglucosamine; GalNAc, N-
acetylgalactosamine; IκB, inhibitor of κB; Itch, itchy E3
ubiquitin protein ligase; IRF8, interferon regulatory fac-
tor 8; JMJD5, Jumonji C domain-containing 5; KBTBD11,
Kelch repeat and BTB domain-containing protein 11;
Keap1, Kelch-like ECH-associated protein 1; LDHA, lac-
tate dehydrogenase A; LMCD1, LIM and cysteine-rich do-
mains 1; lncRNA, long non-coding RNA; MAST4, micro-
tubule associated serine/threonine kinase family member 4;
M-CSF, macrophage colony-stimulating factor; MEKK2,
mitogen-activated protein kinase kinase kinase 2; MT1-
MMP, membrane type 1 matrix metalloproteinase; NEAT1,
nuclear enriched abundant transcript 1; Nrf2, nuclear fac-
tor erythroid 2-related factor 2; OCPs, osteochondropro-
genitors; OCN, osteocalcin; OGT, O-GlcNAc transferase;
OPN, osteopontin; PDLCs, periodontal ligament stem cells;
PGI2, prostaglandin I2; PIASxβ, protein inhibitor of ac-
tivated STAT-xβ; PKA, protein kinase A; PTM, post-
translational modification; RANKL, receptor activator of
nuclear factor-kappa B ligand; RbBP5, RB-binding pro-
tein 5; RBX1, RING-box protein 1; RNF138, RING
finger protein 138; SAE1, SUMO1 activating enzyme
subunit 1; SENPs, SUMO-specific proteases; Smurf1,
Smad ubiquitylation regulatory factor 1; SOST, sclerostin;
SUMO, small ubiquitin-related modifier; TAB1, TGF-
β-activated kinase 1/MAP3K7-binding protein 1; TAK1,
TGF-β-kinase 1; TANK, TRAF family member-associated

NF-κB activator; TAPT1, transmembrane anterior poste-
rior transformation 1; TGF-β, transforming growth factor-
β; TLR4, Toll-like receptor 4; TRAF6, TNF receptor-
associated factor 6; TRIM16, tripartite motif 16; UBAP2l,
ubiquitin-associated protein 2-like; Ubc9, ubiquitin car-
rier protein 9; Ubc13, ubiquitin-conjugating enzyme 13;
UDP-GlcNAc, uridine diphosphate N-acetylglucosamine;
Uev1A, ubiquitin-conjugating enzyme variant 1A; UPS,
ubiquitin proteasome system; VDR, vitamin D recep-
tor; VHL, Von Hippel-Lindau tumor suppressor; WWP2,
WW domain-containing E3 ubiquitin protein ligase 2;
LDN, LacdiNAc; ER, endoplasmic reticulum; OGA, O-
GlcNAcase; NFATc1, nuclear factor of activated T cells
1; NUP153, nuclear pore protein nucleoporin 153; USPs,
ubiquitin-specific proteases; TNF, tumor necrosis factor;
PBK, PDZ-linked kinase; CUL3, cullin 3; Cbl-b, Casitas
B lymphoma-b; PPARγ, peroxisome proliferator-activated
receptor γ; GDF11, growth and differentiation factor 11;
H3K18la, histone 3 on lysine residue 18; NF-κB, nuclear
factor-κB; ZDHHC, zinc finger DHHC-type containing;
RUNX2, runt-related transcription factor 2; BMMs, bone
marrow-derived macrophages; hPDLSC, human periodon-
tal ligament stem cell; HAUSP, herpesvirus-associated
ubiquitin-specific protease; YAP1, Yes1 associated tran-
scriptional regulator; DCAF1, DDB1 and CUL4 associated
factor 1; IKKβ, inhibitor of nuclear factor kappa-B kinase
subunit beta; mRNA, messenger RNA; DUBs, deubiquiti-
nating enzymes; WWP1, WW domain containing E3 ubiq-
uitin protein ligase 1.
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