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Abstract

The article illustrates the interpolation techniques
based on the “moving window Shannon reconstruction”
(MWSR) and demonstrates its performance in real and
Fourier domain. Interpolation in reciprocal domain is relevant
to tomographic reconstructions via direct Fourier methods
(DFM). With these techniques, a structure is reconstructed
by interpolating its FT coefficients in Cartesian coordinates
from the transforms of projections, and by inverting the
result to real space. Although the samples are not equally
spaced according to Euclidean metric, the MWSR can be
used provided that an invertible transformation exists which
maps the sampling points in a new coordinate system in
which they are evenly distributed. These coordinate
transformations are illustrated for the polar geometry of X-
ray tomography and for electron tomography with random
conical tilt. DFM and convoluted back-projection are
compared on the basis of quantitative parameters.
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Introduction

In signal and image processing as well as in tomog-
raphy and in many other computer-based sciences,
functions which are assumed to be continuous are measured
and stored in a sampled form. Thus, numeric elaborations
deal with huge arrays of numbers spanning one- or multi-
dimensional spaces. An ubiquitous task consists of
retrieving the value of a function in points that have not
been actually measured. Apart from special circumstances,
this problem cannot be solved exactly: “it is just this arbitrary
division of continuum into discontinuous units that gives
rise to a large proportion of errors” (L. Tolstoj, War and
Peace, III, 3, 1).

The process of retrieving unknown values from
known ones is called interpolation or resampling or even
“reconstruction” (e.g., Wolberg, 1990), though scientists
working in tomography would prefer the latter term to be
reserved for the process of obtaining a function from its
projections. A number of algorithms can be used to
accomplish the task; the accuracy of the retrieved values
depends on the algorithm used, on the type function involved
and on the layout of samples.

Available methods belong to two main classes, based
either on polynomials or on harmonic functions. The first
class adopts spline-type functions (Hou and Andrews, 1978)
and comprises the nearest-neighbor approximation and the
linear interpolation which may be considered as a zero- and
first order splines. A spline interpolation is based on the
Taylor series expansion (e.g., Unser et al., 1995) and the
function recovered is a piece wise polynomial, continuous
with continuous derivatives up to the spline order. Fractional
errors are proportional to dn, where d is the distance from
the nearest original sample and n the spline order. One
important advantage of splines is that the function does
not need to be sampled with constant rate and this makes it
possible to obtain an even distribution from uneven spaced
samples (e.g., Tosoni et al., 1995).

Interpolation with harmonic functions is based on
the sampling theorem (Shannon, 1949) and is often referred
to as “Shannon reconstruction”. In theory, under a number
of assumptions, this technique is able to recover exactly
the function from equally spaced samples. In spite of this



156

S. Lanzavecchia and P.L. Bellon

attractive property, a rigorous Shannon reconstruction is
never performed, even for one-dimensional (1D) functions,
because of its prohibitive computation cost. However,
interpolations with high-order splines may also be difficult
to implement and time consuming.

We have recently introduced some innovations in
the Shannon reconstruction, in an algorithm that we call
“moving window Shannon reconstruction” (MWSR). The
method is suitable for the case of functions sampled with
constant rate and yields outstanding results as far as
accuracy is concerned. (Lanzavecchia and Bellon, 1994,
1995). In this paper we shall briefly introduce the Shannon
theorem, its application to finite intervals, and the MWSR.
Subsequently, we will illustrate some results, obtained in
real domain, in removing the relative distortions from
equivalent images or cell sections. In our implementation of
distortion removal, interpolation is used iteratively on the
same image; the process is shortly discussed here to show
that a function can be resampled a number of times with
MWSR without significant loss of power up to a
predetermined frequency. Concerning tomography, we will
illustrate and discuss the use of MWSR in “Direct Fourier
Methods” (DFM) of reconstruction. A DFM consists of
recovering the n-dimensional Fourier transform (FT) of a
function from (n-1)-dimensional FT of its projections. The
latter provide a sampling of the function FT in a given coordi-
nate system which is to be converted into Cartesian
coordinates. Resampling in Fourier space is often regarded
as a cumbersome task, both because of the peculiarity of
data in the frequency domain and of the layout of samples
(Lewitt, 1983). Actually, conversion from a system of
coordinates to another in the Fourier domain is the crux of
DFM, though the inherent accuracy of MWSR can overcome
all problems and yield extremely accurate results.

The Shannon Reconstruction

According to Shannon’s theorem, a band-limited
function f can be exactly reconstructed in its continuous
domain from an infinite number of discrete samples, equally
spaced. If ω

c
 is the maximum frequency component of f, the

distance δ between the samples must satisfy the condition:
δ ≤π/ω

c
. According to this hypothesis, the reconstruction

equation is:
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The value ω
c
/π is called the Nyquist sampling rate,

and is just below the minimum rate required to detect the
component ω

c
. Equation (1) represents a discrete

convolution between f and an interpolating sinc kernel: sin
(πx)/πx.

Equation (1) is of great theoretical importance but
cannot be used as such. If the number of samples is finite,
then the series is truncated. This is equivalent to assuming
f to be zero out of the sampling interval, an assumption that
contradicts the hypothesis: a space limited function cannot
be band-limited, apart from the trivial case of f = 0.

The approximation introduced by the fact that the
number of samples is finite can be eliminated if the function
is considered to be periodic along the real axis, with a period
equal to the sampling interval. This hypothesis is
automatically implied in most Fourier analyses. Under this
assumption and for an odd number of samples, a
reconstruction function can be obtained with use of the
“Fourier series kernel” (Papoulis, 1962):
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As is true for Equation (1), this is a discrete convo-
lution of the samples with an interpolating kernel. Papoulis
(1966) has shown that, under certain hypotheses, a function
can be reconstructed from its N samples by convolution
with many different interpolating kernels. For an even number
of samples, Yuen and Fraser (1979) have derived the
following reconstruction equation:
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We have recently shown (Lanzavecchia and Bellon,
1995) that the reconstructing functions ϕ and ψ are members
of a family:
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where A is even for N odd and vice versa. Equations (2) and
(3) correspond to φ0 and φ1 respectively. Some interpolating
kernels kA are drawn in Figure 1 for an interval with 32
samples.

Equation (4) applies rigorously only if f is a trigono-

(1)

(2)

(3)

(4)
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metric polynomial whose finite degree is lower than the
maximum observable frequency dictated by the sampling
rate.

Since periodicity is assumed, the validity of this
hypothesis depends upon f, and the choice of the sampling
interval is important.

The conditions which fully justify the application of
Equation (4) are seldom verified so that φA generally
represents an approximation to f, though more correct than
that obtained by truncating Equation (1). In any event, if N
is large, convolutions of the type shown above require long
computation times. If the summations of Equations (2) and
(3) are drastically limited to a small window of samples
around the point to be interpolated, the results are worse
than those obtained with spline algorithms (Hou and
Andrews, 1978) and this is true also with all kernels
represented in Equation (4). Truncated reconstructions are
inaccurate because the kernels keep oscillating even very
far from the short window interval.

The Moving Window Shannon Reconstruction

Until now we have formulated a family of recon-
struction equations which perform a discrete convolution
of all samples with the interpolating kernel. The simple
innovation of MWSR consists of regarding a small window
of n points (n<<N), moving along the sampling interval, as

an entire sampling interval in which the convolution is
performed. The center of the window is positioned on the
value to be resampled. Let an index m label the first sample
within the window; m is displaced by about n/2 from the
point to be reconstructed. With this notation the
reconstruction equation becomes:
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The suffix n is now attached to φ to highlight the
window width. In this way the number of convoluting
coefficients can be lowered almost at wish, without
truncation; the interpolating kernel is modified and adjusted
to match the width of the moving window.

Assuming the window to be a complete sampling
interval is equivalent to saying that the function is periodic
with a period equal to the moving window. Thus, φ

n
A is

equal to f only if the latter is a finite trigonometric polynomial
in every sub-interval of width n, a condition which is seldom
fulfilled. This rough approximation is the source of errors,

Figure 1. The shape of some interpolating kernels kA(x)=(sin Nx/sin x)(cos x)A in the period [-π,π]. Kernels with even and odd
A are drawn for intervals sampled in 31 and 32 points, respectively.

(5)
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because of the spectral aliasing originating from the
discontinuities at the opposite borders of the window. In
this connection, the shape of the kernel, whose period
matches the width of the window, becomes important. As A
increases, the kernels of Equation (4) strongly dampen near
the borders of the window as shown in Figure 1. Kernels
with severe dampen underweight the samples at the borders
and limit the presence of alias components.

The performance of the MWSR can be quantitative-
ly assessed either in Fourier or in real domain. In the former
case, all samples of a function with a known spectral
response are shifted by a fractional amount and the shift-
independent spectrum is compared with the original. For a
comparison in real domain it is convenient to shift the
function twice, back and forth, so that the result is directly
comparable with the original. Functions appropriate for these
tests can be obtained by inverting 1D transforms with all
moduli set to one, up to a prescribed frequency, and setting

phases at random. One of them, computed on 1024 samples
with unit moduli up to the Nyquist frequency (511) is shown
in Figure 2a; though reminiscent of white noise, this function
has a period matching the sampling interval and wraparound
properties so that a Shannon reconstruction based on all
samples would reconstruct the function exactly whereas a
MWSR does so only approximately. The shift test based on
the spectral response has been performed by interpolating
the function at every middle points between two original
samples and by computing the spectrum of the result. If the
resampling is repeated in the opposite direction, then the
final array becomes comparable with the original one in the
real domain. Spectral comparisons are reported in Figures
2b and 2c and errors are shown in Table 1 for different
functions and different kernels.

Switching from 1D to two-dimensional (2D) interpo-
lation, a 2D implementation of Equation (5) is straight-
forward:

Figure 2. The test function shown in (a), sampled in 1024 points, is obtained by inverting a FT with unit moduli and random
phases up to the maximum observable frequency (511); (b) amplitude spectra of the test signal shifted by half a sample with
MWSR and two different kernels, with linear interpolation (LI) and cubic spline (CS); (c) same results with the Shannon
reconstruction of Equation (4), truncated to 9, 11 and 15 samples.
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Table 1. Maximum absolute error (MAE) and root mean
square deviation (rmsd) in % of the dynamic range, obtained
in a double shift (forth and back by half a sample) of the
function of Figure 2a. Shifts are performed with
interpolations based on a truncation of Equation (4), on the
MWSR and different kernels, or on cubic spline (CS) and
linear interpolation (LI).
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The time spent in computing transcendental coefficients
might be prohibitive, even with small windows. In our
implementations of the MWSR, the coefficients are stored
in a look-up table (Lanzavecchia and Bellon, 1994). The
window of n2 samples used in Equation (6) requires two
sets of n different values. Each set depends upon the
distance of the x or y coordinate from the left nearest j or
from the bottom nearest i indices. These fractional distances,
multiplied by the number of pages of the table and converted
to integers, address the positions in which the two sets are
stored.

Applications to Real Domain

Electron tomography with single axis tilting fre-
quently deals with 2D crystalline arrays. The large number
of repeating units contained within a single micrograph is
the key for low-dose, high resolution studies of
macromolecular assemblies (e.g., Henderson et al., 1990;
Jap et al., 1991). This resolution is achieved by combined
use of images and electron diffraction patterns and of
techniques designed to suppress crystal disorder
(Henderson et al., 1986). The refinement of strategies to
detect and remove lattice distortion seems to be continuing
(Saxton et al., 1992). Crystal imperfections are detected and
resampling schemes are adopted to obtain regular crystal
portions, suitable for spectral analysis and tomography.
Most often, sophisticated unwarping approaches are based
on linear interpolation.

The problem of warping is encountered in morpho-
logical studies of large and complex organelles such as
flagella and cilia. These can be sectioned and portrayed in
the electron microscope (EM) to obtain sets of equivalent
images, though distorted with respect to each other. If
distortions are removed, then a number of sections can be
averaged to get “restored” images with improved signal-to-
noise (S/N) ratio (Bellon and Lanzavecchia, 1992). To
accomplish this, images with different ellipticity are stretched
to a circular shape and rotated; at this point relative
distortions can be detected and eliminated by further
resampling steps. Certain sections show arrays of organelles
or parts of them (e.g., Lanzavecchia et al., 1991) which, in
spite of an evident crystalline order, are distorted to such
an extent that restoring them by filtration of non-periodic
components would make no sense. With large and complex
structures, such as flagellar doublets or entire axonemes,
the process of removing distortions to finer and finer levels
may require 4 or 5 iterations. Suppose that this iterated
process is done with linear interpolation which, in 1D
resampling, cuts 10% of the amplitude of spectral
components at about 0.3 times the maximum frequency. After
n 2D interpolations those amplitudes will be reduced by a
factor of 0.92n. Iterated resampling without power loss is
possible if the interpolation algorithm ensures the
preservation of all spectral amplitudes up to the highest
significant component of the pattern. In the first attempts
to improve the results of Fourier filtering of biological 2D
crystals by resampling (Crowther and Sleytr, 1977), the
authors were disappointed by the lack of significant band-
pass improvement. Most probably, linear interpolation was
the reason for such unsatisfactory results.

We have shown (Bellon and Lanzavecchia, 1992)
that it is possible to iterate quite a few resampling steps in
distorted crystalline arrays using the MWSR. The
improvement obtained can be appreciated by comparing

(6)



160

S. Lanzavecchia and P.L. Bellon

the two amplitude spectra of Figures 3a and 3b. The pattern
analyzed, not shown here, was a section of a macro-cilium
of a Ctenophore with a cell edge of about 300 nm. The
spectrum in Figure 3b, not filtered, was obtained after a
four-fold resampling. The comparison of the two spectra
explain why we call this iterated resampling a “power
harvesting” algorithm.

Non Euclidean sampling

We have already shown in Equation (1) how a band
limited function f(x) can be recovered from a set of evenly
spaced samples {x

j
=jδ}. Consider now a set of not equally

spaced samples {x
j
}; according to Clark et al. (1985), if a

transformation γ(x) = τ exists, such that γ(x
j
)=jδ, a new

function h(τ)=h(γ(x)) ≡ f(x) is available. The function h

comes out to be evenly sampled in τ, since h(jδ)=f(x
j
); if h(τ)

is band-limited, Equation (1) can be applied to reconstruct
it, and therefore to reconstruct f:
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The conditions which make the reconstruction of
Equation (7) exact are discussed in the paper by Clark et al.
(1985); briefly, both f and h should be band-limited and an
invertible transformation  should exist. If this is not strictly
valid, Equation (7) represents only an approximation. In the
same way as Equation (7) is derived from Equation (1), the
equivalent of Equations (2)-(5) may be obtained. If the
MWSR is adopted, then the damping of the kernel is useful
to reduce aliasing effects. It should be noted that the
argument of the kernel in Equation (7) depends upon γ(x)
rather than upon x; this implies that the distance between
the point to be reconstructed and the original samples of f is
to be measured according to a metric corrected by the trans-
formation. These distances are usually different with respect
to the metric of the original space.

A polar raster is a typical sampling grid in which the
points are lying at uneven Euclidean intervals, though
equally spaced in r and θ. The transformation of coordinates
from Cartesian to polar is the invertible mapping which
connects the two samplings.

The MWSR in DFM Tomographic Reconstructions

A function can be reconstructed from projections
provided that their number is high enough and that the
projecting directions are well distributed (e.g., Hoppe and
Hegerl, 1980; Radermacher, 1988). This distribution of
projecting directions has a counterpart in reciprocal space,
since the FTs of projections are central sections of the
function transform. In three dimensions, the transform of
the function to be reconstructed is sampled by a set of 2D
transforms and this offers the possibility to resample the
overall transform in Cartesian coordinates and to obtain the
reconstruction by a simple Fourier inversion. This kind of
process is called a “direct Fourier method” (DFM).

With regard to resampling, reciprocal space is
perfectly equivalent to direct space. The Fourier transform
operator maps functions from L2(ℜ ) to L2(ℜ ), so that both
the original function and its transform belong the same
Hilbert space (Plancharel theorem, see, e.g., Rudin, 1974).
Thus, the Shannon criterion, valid in real domain, applies to
reciprocal domain as well. Furthermore, for a function with
finite support, the relationship between the discrete Fourier
series, computed with respect to the support, and the

Figure 3. Amplitude spectra of a periodic array of cilia
(section of a Ctenophore macrocilium), before and after
distortion removal. In spite of remarkable periodicity, the
2D crystal is distorted as evidenced by the severe
broadening of spectrum (a). The spectrum shown in (b) is
obtained with four iterations of a process of distortion
removal. Peaks are much sharper and high frequency
components, not observable in (a), are well preserved in the
resampling iterations.

(7)
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continuous transform is such that the coefficients of the
former represent a discrete sampling of the latter (Brigham,
1974). In order to use the Shannon reconstruction, the band
extension of the transform must be finite; a difficulty might
arise in the correct evaluation of this extension.

The Radon theorem requires the projections to be
collected from an isolated object, that is, from a function
with compact support. This hypothesis agrees with the idea
of sampling the overall transform of the object by central
sections, that is, by the discrete transforms of finite
projections. Clearly, the tomographic reconstruction is exact
if the type of sampling in Fourier space is adequate to the
band-pass of the FT of the object, i.e., if it satisfies the
Shannon criterion.

DFM in X-ray CT

All clinical imagery produced by X-ray CT is
obtained with convoluted back-projection methods (CBPM),
though DFM algorithms have been suggested (Stark et al.,
1981; Peng and Stark, 1987; Matej and Bajla, 1990). Clinical
X-ray CT is a 2D problem in which the transforms of 1D
projections represent a polar sampling of the 2D FT to be
recovered and inverted. The resampling performed in a DFM
is therefore a conversion from polar to Cartesian
coordinates.

X-ray scanners use a fan-beam geometry because
the photons impinging on the array of detectors come from
a point source. Thus, two distinct resampling processes are
needed. In a first step (the rebinning) experimental data are
converted by interpolation to the parallel geometry of Radon
transform (Rosenfeld and Kak, 1982). In the second, the
conversion of coordinates is carried out. Since X-ray CT
reconstructions require high resolution and quantitative
attenuation data, the finite width of counters has to be taken
into account (Bellon and Lanzavecchia, 1997). Kernels to
deconvolute this effect are designed on the basis of the
resolution required and of the particular tissue to be
examined. We have shown elsewhere that DFM
reconstructions with use of the MWSR in both resampling
steps are perfectly equivalent to those obtained by CBPM
on clinical instruments (Bellon and Lanzavecchia, 1995).
Figure 4 shows the same high-resolution detail of inner ear
bones, obtained by DFM and CBPM; as one can see, the
two images are indistinguishable.

It is worth mentioning that, on a modern workstation,
the reconstruction of a X-ray CT slice with DFM runs 35-55
times faster than with CBPM. In electron tomography, an
equivalent DFM can be used to reconstruct all slices
orthogonal to the rotation axis in single axis tilting geometry
(Lanzavecchia et al., 1993).

Electron tomography with random conical tilt.

Random conical tilt is an elegant method of electron
tomography which allows different projections of a

macromolecular assembly to be collected with minimum
radiation damage (Radermacher et al., 1987). The random
aspect of the method arises from the fact that the azimuthal
angles φ of projections may assume any value. Since,
however, there is a resolution limit in their evaluation, these
angles can be assumed to represent a set of discrete values,
separated by a constant amount  in the interval [0, 2π); the

Figure 4. X-ray CT reconstructions of inner ear bones. No
differences are noticeable among image (a) (convoluted back
projection done by a clinical instrument) and image (b) (direct
Fourier method with MWSR).
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error can be thought of as an azimuthal jitter with maximum
extent of ∆φ/2. Based on this assumption, we have proposed
a DFM approach which uses the MWSR (Lanzavecchia et
al., 1993). The method, embedded in a package called
“SPAtial Reconstruction Kernel” (SPARK), consists of
recovering the 3D FT in Cartesian coordinates from a set of
planar transforms (2D FT of projections) which are sampling
the reciprocal space as shown in Figure 5a.

The coefficients coming from 2D FT of all projec-
tions lie on a set of coronas, one of which is shown in
Figure 5b. In this figure, the rows of coefficients are tangent
to the inner circle (section of the inner cone in Figure 5a)
confining the unexplored Fourier area. Each row of a corona
comes from a different 2D FT and is identified by an azimuthal
angle φ; the set of rows can obviously contain gaps
corresponding to missing projections. These gaps can be
filled as originally suggested in presenting SPARK, or in a
different way (Lanzavecchia and Bellon, 1996). Let us
assume, for the present discussion, that the set of
projections is complete.

The complicated distribution of samples in Figure
5b can be divided into two propeller-like distributions, one
of which is presented in Figure 5c. Either distribution
contains a set of samples which are regularly spaced on the
blades of a propeller and on concentric circles. Each point P
within a corona can be identified by its coordinates (φ, ),
the azimuthal angle of the projection and its position on the
semi-chord, as shown in Figure 5d. Since P is found on
both propellers with different coordinates, two values of it
can be independently recovered. This holds true for all
points of the Cartesian grid enclosed within the corona,
which are recovered in two copies. In the final reconstruction
the two copies are eventually averaged; they can however
be used to perform phase agreement tests (Frank et al.,
1981) without dividing the set of projections into two groups,
as is usually done with CBPM (Radermacher, 1988).

The shape of the 2D moving window used in conical
tilt geometry is rather unusual as can be seen in the two
examples of Figure 6. In most cases, the grid of samples
used to reconstruct a point is enclosed within a mixed
polygon formed by two straight segments and two arcs;
points which are near the inner circle of the corona, however,
are interpolated in a starry polygon obtained by prolonging
to a small extent each blade on the opposite part of the
chords. Blades are prolonged to maintain the interpolated
point in the center of the moving window (Lanzavecchia
and Bellon, 1996).

To obtain a quantitative evaluation of the perfor-
mance of DFM in this geometry, we have formulated some
phantoms made up of a number of Gaussian spheres;
heights and half-height widths of the Gaussian profiles were
assigned with random values. These phantoms were
projected analytically and reconstructions were performed

with SPARK and with our back-projection algorithm. The
transforms recovered by SPARK and those computed from
CBPM reconstructions were compared with the transforms
of the original phantom, by considering the differences in
moduli and phases of coefficients, with the obvious
exclusion of those within the missing cone of the
reconstructions. Table 2 shows the results, based on the
following statistical indices (e.g., Giacovazzo, 1992):
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where F
c
 are the coefficients of the FT computed from the

phantom and F
o
 are those recovered by the reconstruction.

Phase agreement was tested with an index P, almost identical
to the “Fourier ring phase residual” proposed by van Heel
(1987):
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, in radians, are the phase angles in original

and in recovered Fourier coefficients.

Discussion and Concluding Remarks

Band-pass properties of MWSR

All interpolation algorithms behave as low-pass
filters, with the exception of the complete Shannon
reconstructions of functions which satisfy the conditions
mentioned above. In the MWSR, the few samples enclosed
within the window, usually from 6 to 16 depending upon the
required accuracy, are regarded as a complete sampling
interval. It is important to establish, for the small sampling
interval, the maximum frequency transmitted without
attenuation if all hypotheses under which the MWSR is
adopted are verified. Though these conditions cannot
generally be valid, the damping properties of interpolating
kernels will suppress most aliasing errors. A MWSR is
expected to attenuate, within the small sub-interval of the
window, all frequencies higher than M=(n-A-1)/2, n being
the window width and A the exponent of the cosine
expression in Equation (5) (Lanzavecchia and Bellon, 1995).
In theory, a kernel encompassing 16 samples with A=3 will
attenuate all components higher than 6. For an entire
sampling interval, the maximum frequency transmitted
without attenuation is equal to MN/n, the latter term being
the number of times the window is contained in the complete

(8)

(9)
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Figure 5. Conical tilt geometry in the Fourier domain: the resampling process. (a) Lay out of central sections in the 3D FT; a
disk orthogonal to the cone axis cuts the sections. The central section at left (2D FT of a projection) shows the Cartesian array
of discrete Fourier coefficients. The horizontal sampling rate is twice the vertical; this is obtained by appropriate padding of
projections. The intersecting disk in (a) contains the annulus of samples shown in (b); the coefficients of central sections lie
on chords of the outer circle, tangent to the inner one. (c) the system of chords is divided into two propeller-like sets of blades
(only one is shown). Each propeller is regarded as a coordinate system ( ,φ) in which the experimental coefficients represent
an equispaced set of samples. (d) a point P of the portion of Cartesian grid enclosed by the annulus is described by two sets
of coordinates ( ,φ

1
),( ,φ

2
), one for each set of blades.
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interval (Lanzavecchia and Bellon, 1994). Thus, φ
16

3, used
in a 64-points interval is able, in theory, to pass unattenuated
frequencies up to 24, or 75% the Nyquist frequency for this
number of samples.

This band-pass criterion is quite useful in choosing
the kernels appropriate for a particular task. Iterated
resampling, for instance, is possible if one uses a kernel
which transfers unattenuated components just beyond the
maximum frequency present in the image. Since this maximum
cannot be easily established, φ

16
3 could be the appropriate

choice. In X-ray CT, a function φ
11

2 is adequate to
reconstruct the high resolution images of Figure 4 whereas
3D electron tomographic reconstructions of phantoms and
of real structures are done in our laboratory with function
φ

15
4. This accurate kernel is used “ad abundantiam”

because the set of coefficients to be interpolated is fairly
small (usually the reconstructed volume spans 643 voxels)
if compared with that required in an X-ray CT reconstruction.

DFM vs. CBPM in electron tomography

Convoluted back-projection is a “robust” method
to get reconstructions. Compared with DFM, its main
advantage is that equispaced viewing angles are not
required and gaps can be present, though projections need
to be reasonably well distributed in space. Conversely, DFM

needs angular directions evenly spaced and complete
projection sets. However, a non regular distribution of
projecting angles is amenable to a regular one with jitter
errors. Moreover, angular gaps can be filled (Lanzavecchia
and Bellon, 1996) by exploiting the nice properties of a set
of projections ordered with regularly increasing azimuthal
angles. This ordered set can be used to build up a 3D matrix
in which the two fastest indices span the x and y axes of
each projection and the third one spans the azimuthal axis
in the interval [0, 2π). In the absence of noise and if there is
a projection for each value of the azimuth, the 3D FT of the
matrix is zero within an elliptic cone whose axis lies along
the slower index. In the presence of noise, or if some plane
of the matrix is zero because no projection is available at
that angle, the elliptic cone will exhibit non-zero components
which can be cancelled. Since the presence of signal in the
cone implies a tomographic inconsistency of the ordered
set, zeroing the cone means cancelling the part of noise
which is not consistent with the projection process (“non
tomographic noise”, NTN). If some plane of the matrix is
empty, then some information will appear on it upon
inversion of the 3D transform. The process of zeroing the
cone can be iterated a few times on a matrix containing the
original projections plus what has appeared in the empty
planes. The process is a kind of projection onto a convex
set (POCS) sequence of iteration in which the target is
represented by the Fourier transformed ordered set with
the elliptic cone containing zero. Four or five iterations are
usually enough to recover with good accuracy all missing
projections (Lanzavecchia and Bellon, 1996).

It seems important to compare the intrinsic accuracy
of CBPM and DFM, and this can be done in the conditions
which make the DFM rigorously valid. We have done this
comparison both for single axis and for conical tilt. A back-
projecting program written for this purpose needs no
weighting schemes to take into account arbitrary geometries
or uneven distributions of projecting directions (Harauz and
van Heel, 1986; Radermacher et al., 1987). The ramp-filter
shape was designed in real space to avoid the “dc-shift”,
an alteration of the mean value (Crawford, 1991). Since the
filter convolution is performed in Fourier space, the
performance of CBPM has also been tested with padding of
projections to avoid artefacts arising from circular
convolution (Rosenfeld and Kak, 1982).

Three-dimensional tomographic tests with single axis
geometry were carried out with the same phantoms used to
test DFM in conical tilt. Analytical projections of phantoms
were computed for the interval [-π/2, π/2] to get a complete
set of projections. Sets of this type might be obtained, even
for entire organelles, on the high voltage EM (McEwen,
1992). The reconstructions by DFM were performed with
the same program used with conical tilt geometry (the tilt
angle θ being π/2). Four types of CBPM reconstructions

Figure 6. Different shapes of the 2D moving window in
conical tilt geometry. The experimental samples on the
annulus of Figure 5 are equally spaced in the ( ,φ) system,
not so in an Euclidean metric. (a) if the point being resampled
is internal to the annulus, the moving window has a convex
shape. Near the inner border of the annulus, the blades are
prolonged a bit, to maintain the point to be resampled in the
center of the window which has the starry shape shown in
(b).
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were carried out: with or without padding and with linear- or
MWSR interpolation. The results, in terms of the indices R,
R′ and P described above, are collected in Table 2. As one
can see, our DFM yields high accuracy results and CBPM
performs comparably provided that padding and MWSR
are used. Thus, the equivalence of DFM and CBPM, which
stand on a common theoretical ground, is rigorously verified
in practice.

Table 2 reports also the comparison among the two
methods for conical tilt (tilt angle θ=50°). As can be seen,
the fairly good agreement indices for CBPM reconstructions,
obtained with padding and MWSR, are far from the extreme
accuracy of DFM as implemented in SPARK. Though the
phase index P, the most significant one, shows good
agreement, the amplitudes of coefficients deviate
appreciably from analytical values. The reason for this
discrepancy is being investigated at present. Perhaps, the
type of indices we are adopting are the most convenient for
DFM; other indices, based on direct space (e.g., Herman,
1980), might yield more favorable results for CBPM.

Until now we have reported tests and agreement
indices based on equispaced projections. One could argue
that, with random conical tilt, errors will arise because the
azimuthal angles are not rigorously equispaced (e.g., Frank,
1996). The effect of jittering azimuthal angles can be tested
by computing analytical projections whose angles depart
from equispaced φ values by random amounts in the range
±∆φ/2. If a DFM reconstruction is done by assuming
jittering angles to be equispaced, the reliability indices

obtained (see last line of Table 2) still look better than those
obtained via CBPM with equispaced projections.

All tests illustrated till now are based on noise-free
data; a problem still remains, concerning the behavior of
the algorithms in the presence of noise. CBPM is a robust
technique, and its widespread use in tomographic
experiments confirms its reliability in different conditions
as for the layout and the noise level of projections. DFM
need special geometries and this limits its dissemination
and the possibility of testing the algorithm in a number of
situations. As for the type of experiments presented here,
studies are in progress on noisy data sets of projections;
preliminary results indicate that differences exist in the
behavior of the two approaches; these differences tend to
vanish if the consistency of noisy sets of projection is
improved by filtering out non tomographic noise
(Lanzavecchia and Bellon, 1996).

The opportunity offered by DFM in estimating
accurate Fourier amplitudes on a Cartesian grid is quite
useful in POCS applications. According to POCS theory
(Sezan and Stark, 1984; Carazo and Carrascosa, 1987; Carazo,
1992), a set of constraints can be iteratively imposed on a
reconstruction, to fill up the unexplored region of the Fourier
transform. “Value” and “support” constraints are imposed
in real space whereas the “measurement” constraint, to
enforce the consistency of the POCS solution with known
projections is usually imposed in the reciprocal domain
(Frank, 1996). In single axis and conical tilt geometry, once
the reconstruction has been constrained in real space, it is
straightforward to impose the measurement constraint by

Table 2. Reliability indices R, R′ and P obtained in reconstructions of phantom structures with convoluted back-projection
(CBPM) and direct Fourier method (DFM) for conical tilt- and single axis tilt geometry. Methods adopted for CBPM are
indicated in parentheses: LI is for linear interpolation and PD for padding used in the convolution; if MWSR is used in
interpolation, the kernel is specified. Two types of data have been used in DFM reconstruction: projections separated by a
regular amount ∆φ (EQ) and, in conical tilt, projections whose angles are varied at random in the interval ±∆φ/2 (RND).
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restoring, in its FT, the accurate samples obtained with DFM.
Compared to CBPM, DFM is a “flash” process. As

mentioned above, this is true for DFM reconstructions of
X-ray CT slices. For the 3D reconstructions of electron
tomography, we can quote the times used by the two
methods in reconstructing volumes of 643 voxels, with
conical tilt geometry and 128 projections. On our
workstation, DFM requires 15 seconds and CBPM, with
padding and MWSR, 350 seconds. These data show that
the reconstruction step with either methods is not as time
consuming as other tasks encountered in electron tomog-
raphy, such as the orientation of large sets of images, their
classification with multi-variate statistical analysis and the
final restoration with POCS techniques. The fact that a DFM
reconstruction is obtained in a few seconds is, anyhow, a
nice aspect of the approach.

Concluding remarks

We have illustrated above the outstanding behavior
of the moving window Shannon reconstruction in a number
of applications in real and Fourier domain. Its extensive use
for quite a few years (Bellon and Lanzavecchia, 1990) has
allowed us to gain a wide experience with it and to embed it
in a variety of different algorithms used in electron
microscopy (e.g., Lanzavecchia et al., 1994).

The most interesting applications of this interpola-
tion is the accurate resampling required to convert one
coordinate system to another in Fourier domain. This
possibility might be important in other applications, different
from the problems of tomographic reconstruction, which
could be devised to cope with other problems. In this
connection, a fast DFM to obtain 2D and 3D Radon
transforms is in progress in our laboratory and the use of
the MWSR is being exploited in the Radon domain. The
possibility to resample accurately a function in different
domains and in different coordinate systems is, potentially,
of a much wider use that we can foresee at present.
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Discussion with Reviewers

M. Radermacher: How does the algorithm perform, as
compared to others, when the angular sampling is
incomplete, i.e., some projections are missing?
Authors: For a DFM based on MWSR, the set of evenly
space projections must be complete; if gaps exist then they
must be filled, as briefly reported above, with use of the
strategy proposed elsewhere (Lanzavecchia and Bellon,
1996). In that paper, we show that even when as many as
25% of projections are missing, and noise is present, the
quality of the reconstruction does not change significantly
with respect to that obtained from a complete set. However,
our experience with CBPM applied to uneven distribution
of projections and with the related weighting schemes is
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still limited; studies are in progress to compare the results
of reconstructions from incomplete sets and from sets in
which missing projections have been recovered.

For the problem of uneven sampling, a strategy we
are planning to explore consists of a mixed interpolation
scheme based on MWSR and splines, since it is commonly
assumed that, in tomographic experiments, resampling the
angular direction is less critical than the radial one (Matej
and Bajla, 1990). In other words, it is possible to design an
interpolation technique with MWSR in the radial direction
and with splines in the angular one. Cubic splines do not
need equally spaced data, so that gaps can simply be
regarded as regions of uneven sampling.

N. Bonnet: The problem of uneven sampling of the
projections in tomographic reconstruction has been tackled
by several authors including M. van Heel, M. Radermacher
(your references) and Boisset et al. (these proceedings).
Do you believe your interpolation method is also able to
cope with this problem and how does it compare with the
previous approaches (adapted filters and topological
selection)?
Authors: Our DFM approach in electron tomography is
limited until now to single axis and conical tilt geometries; a
bit of randomness can be managed as we point out in
answering to the question of M. Radermacher. For
completely random orientations of the projections, a
resampling scheme to obtain the Fourier transform in
Cartesian coordinates needs still be devised, though some
ideas are flying around in our lab (see comments to the
previous question). Adapted filters and algebraic
reconstructions seem, at the moment, the only way to cope
with the problem. A topological selection of projections
may be useful for simpler and faster reconstruction
algorithms, although a proper weighting scheme would allow
algebraic reconstruction to take advantage of the
information coming from the entire set of available images.

A DFM implementation of the reconstruction from
random projections would possess the advantage of
eliminating all approximations related to the choice of
weighting functions, which is somewhat arbitrary. The
slightly different weighting schemes proposed by
Radermacher (1988) and Harautz and van Heel (1986) limit
the support of the selected weighting function in reciprocal
space in order to speed up computations. Probably, these
approximations are good enough for the level of noise in
the micrographs and for the quality of the results expected.

A resampling scheme for a DFM with completely
random orientations might be feasible in the future, by taking
advantage of a 3D Radon inversion whose back-projection
implementation has been proposed by M. Radermacher
(these proceedings).

N. Bonnet: In your paper, you claim that many image
processing techniques require to perform “sophisticated”
interpolation rather then the “usual” linear or spline
interpolations. The advantage of your interpolation scheme
is demonstrated theoretically (study of transfer functions)
in Figure 2. Could you indicate some general figure of merit
for the importance of the improvement you expect in practical
situations? For instance, could you give the equivalent of
Figure 4 when linear interpolation is used for the direct Fourier
reconstruction, instead of MWSR.
Authors: Since the advent of X-ray CT, back-projection
algorithms have always been preferred to DFM, though the
latter technique was universally thought to be faster. The
reason is due to a number of artefacts in the reconstructions
such as rings, cambers and cross-shaped ripples, which
often appear in DFM images (e.g., Magnusson, 1993). These
artefacts are mostly caused by the poor performance of
linear interpolation in resampling very strong coefficients,
i.e., the low frequency components. In the image presented
in Figure 4, artefacts introduced by linear interpolation
would not be evident since the wide dynamic range of the
reconstruction is compressed into 256 gray levels; this
compression is adopted as a standard in clinical
examinations of inner ear bones. Quite a different situation
is encountered in examining brain soft tissues. In these
reconstructions the radiologist’s attention is focused on
about 3-5% of the dynamic range, within which tiny
differences of contrast play a fundamental role in the
diagnosis. An image of this type, a head slice studied for
possible brain problems, is shown in Figure 7. The two
reconstructions shown there have been obtained with
MWSR (Fig. 7a) and linear interpolation (Fig. 7b). The strong
artefacts of linear interpolation clearly make the
reconstruction in Figure 7b nonsensical.

J.M. Carazo: Your point about the possibility of using two
estimations of each Fourier transform sample for resolution
assessment is quite interesting, could you elaborate on it
further? How would it compare with the usual a priori
splitting of the projections?
Authors: A set of projections in conical tilt geometry
contains redundant information; this is evident in Figure 5
if one considers how the 2D transform planes intersect one
another. With noisy data, this redundancy is useful for
averaging the information and obtaining an improvement
of the signal to noise ratio; this is true for both DFM and
CBPM. In our DFM, this redundancy is exploited to perform
two independent resamplings of each point of the Cartesian
transform. Since each set of resampled coefficients yields
an independent reconstruction, the two reconstructed maps
can be compared to assess the resolution limit. In principle,
this is perfectly equivalent to an a priori split of projections
into two sets which are used in two independent
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reconstructions. The two strategies are equivalent if the
errors of the reconstruction processes are not taken into
account. Actually, the splitting of data lowers the sampling

rate in the angular direction of reciprocal space. With DFM,
this means that the probability of gaps increases and that
the quality of interpolation may be worse. With CBPM, the
lowered sampling rate implies a weighting scheme far from
the analytic one, which requires equally spaced projections.
On the basis of the criterion that links the resolution to the
number of projections (Radermacher, 1988), it is clear that
reconstructions obtained from split data are expected to be
poorer, unless the number of available images is very high.
In contrast, the two reconstructions coming from the
independent resampling of a unique set of projections
behave, with respect to the resolution criterion, as the
reconstruction from the full set does.

Additional Reference

           Magnusson M (1993) Linogram and other direct
Fourier methods for tomographic reconstruction. Doctoral
Thesis, Linköping Studies in Science and Technology.
Dissertation No 320. University of Linköping, Sweden. pp
153-186.

Figure 7. X ray CT reconstruction of a head section. Only
about 3% of the total dynamic range is shown in the 256
grey level of the representation, as required in clinical
diagnostics. This range is selected to highlight the contrast
within the brain tissue. Both images have been obtained by
DFM reconstruction. (a) Reconstruction obtained with
MWSR algorithm. (b) Reconstruction obtained with linear
interpolation. The strong artefacts in (b) make this image
completely useless.


