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Abstract

Theoretical high-frequency capacitance-versus-
voltage curves have been calculated for silicon in order to
correlate scanning capacitance microscope (SCM)
measurements with semiconductor dopant profiles.  For two-
dimensional cases, the linear finite-element method is used to
solve Poisson’s equation in the semiconductor region and
Laplace’s equation in the oxide and the ambient regions.  For
three-dimensional cases, the collocation method is used in
the semiconductor region, and the linear finite-element method
is used outside this region.  For a given oxide thickness, probe
shape, and probe-tip size, the capacitance is calculated for a
series of cases of uniform doping, and a few example solutions
are found for a model graded doping profile.  For the case of
uniform doping, the theory can be used to form a database for
rapid interpretation of SCM measurement data.
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Introduction

Profiling the dopant concentration along the surface
of a processed semiconductor wafer with 20 nm spatial
resolution and 10% accuracy is identified in the 1994 National
Technology Roadmap for Semiconductors as a critical
measurement need for the development of next generation
integrated circuits [38].  This need is well documented and is
the subject of a recent review [11].  One scanning probe
method that holds great promise for two-dimensional (2D)
and three-dimensional (3D) dopant profiling is scanning
capacitance microscopy [7, 11, 14, 18, 19, 20, 21, 23, 24, 25, 29,
30, 40, 41, 42].  A scanning capacitance microscope (SCM) is
based on an atomic force microscope (AFM) with a modified
conducting tip and appropriate circuitry to measure the probe-
to-sample capacitance variation as a function of both bias
and probe position.  A thin insulating oxide layer atop the
sample separates the semiconductor from the conducting
probe-tip, thus forming a metal-oxide-semiconductor (MOS)
capacitor.  The measured data are proportional to the change
in the high-frequency capacitance caused by a modulation
voltage and provide a measure of the field-induced changes
in the semiconductor volume depleted of majority carriers.
From these measurements, the dopant concentration is
determined.  Extracting dopant profiles from SCM data requires
a model, and this ultimately establishes the accuracy of the
method.  While accuracy is important, there is also a need for
a quick interpretation of the data.  The first models [18, 21, 23]
to quickly interpret SCM data used a number of simplifying
assumptions, such as using the one-dimensional (1D) MOS
capacitor model [16], but this tends to compromise the
accuracy.  These models are discussed further in the Appendix.
To help correlate SCM data with dopant concentration, we
have calculated theoretical high-frequency capacitance curves
as a function of applied bias for a range of dopant densities in
silicon for a given oxide thickness and probe-tip size.  A set of
calibration or conversion curves relating dopant density and
derivative of the high-frequency capacitance is presented here
that will provide the basis for a quick and accurate means to
extract dopant densities from SCM data.

For 2D cases, the model samples are uniformly doped,
and the probe is conically shaped and oriented normal to the
surface of the sample, so that the system exhibits cylindrical
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symmetry.  The linear finite-element method is used to solve
Poisson’s equation in the semi-conductor region and Laplace’s
equation in the oxide and the ambient regions.

Because there is need to understand SCM data near
junctions, example solutions are also found for a model high/
low like-dopant (p+/p) graded profile junction.  The net charge
density distribution is found near the model junction for cases
when a probe is absent, a V shaped probe is centered above
the junction, and a conical-shaped probe is centered above
the junction.  The conical probe is tilted away from normal by
a small angle as in a commercial SCM, and for this fully 3D
case, the collocation method is used in the semiconductor
region, while the linear finite-element method is used outside
this region.  These cases are intended to high-light some of
the characteristics that need to be considered in the next
generation of models that will be applied to more realistic but
complicated 3D configurations.

Formulism

In modeling SCM data of a doped semiconductor wafer,
it is useful to review some aspects of the measurement process,
the MOS structure, and the approximations that are used to
model them [6, 15, 16, 17, 18, 22, 28, 31, 36, 37, 39].  While there
are a few different modes of operating an SCM, in each case,
the measurement process involves placing a small highly
conducting probe-tip near or on the surface of the thin (≈ 10
nm) insulating layer that covers the surface of the doped
semiconductor substrate.  A bias that contains both a steady-
state and a small high-frequency alternating cur-rent
component is applied between the probe and the
semiconductor.  The component, ∆V, displaces the electron
and hole distributions in the semiconductor slightly away
from their biased steady-state values.  The resulting
capacitance variation ∆Q/∆V is inversely proportional to the
probe-to-sample circuit impedance.  One mode of operating
an SCM is based on the derivative of the high-frequency (HF)
capacitance, where the measurement is proportional to dC

HF
/

dV
m
, and V

m
 is the amplitude of a low-frequency modulation

voltage.  (The low-frequency component has a frequency
between 1 kHz and 10 kHz with an amplitude between 0.1 V
and 5 V, depending on the oxide thickness and the doping
concentration.  The high-frequency component has a
fre-quency of 915 MHz with an amplitude of 0.1 V).  Here, the
bias includes both a low- and a high-frequency component,
and the SCM measures the derivative of the HF depletion
capacitance.  The goal here is to model the derivative of the
HF depletion capacitance [16].

In order to correlate SCM data with dopant profiles,
∆Q/∆V must be known as a function of both bias and dopant
density [16, 31, 36].  This is a complicated problem, because a
number of things may exist or occur in the sample or the
measurement procedure that can affect the measurement, and

thus, the modeling.  This includes the doping profile, the oxide
thickness, interface states in the silicon band gap, light,
vibration, etc., [31, 37].  Some of the interface states may be
reduced by careful processing.  To reduce the effects of any
externally applied light and vibration, the SCM measurements
are made in the dark in a closed and isolated chamber, and
special care is given to the laser monitoring of the probe to
prevent any illumination on the semiconductor.  In order to
make the problem more tractable, some simplification is needed.
The model here uses idealized materials and conditions, no
externally applied illumination on the semiconductor sample,
a continuum model of band bending, no interface states, a
uniform oxide thickness, and a uniform doping profile.  The
model is a first step toward interpreting SCM measurements.
The electron and hole distributions in the semiconductor are
determined by solving Poisson’s equation,

∇  ⋅ (ε
r
∇ψ ) =   (q/ε

o
)(N

d
 - N

a
 + p - n),

where q refers to the elementary charge (1.602 x 10-19 C), ε
0

refers to the relative permittivity of free space (8.854 x 10-18 F/
µm), ε

r
 refers to the relative dielectric constant of the material

(11.9 for Si, 3.9 for SiO
2
, and 1.0 for air), N

d
 refers to the number

density of the ionized donor impurity distribution (µm-3), N
a

refers to the number density of the ionized acceptor impurity
distribution (µm-3), p refers to the number density of the mobile
hole distribution (µm-3), n refers to the number density of the
mobile electron distribution (µm-3), and ψ refers to the electric
potential distribution (V).  For the calculations, the zero of the
potential is set by the conduction band minimum in the
semiconductor substrate far away from the probed surface,
qψ = E

F
   E

C
, where E

F
 refers to the Fermi level that is constant

for a system at equilibrium, and E
C
 refers to the bottom edge

of the conduction band.  The carrier number densities n and p
are related to the potential ψ through the use of Fermi statistics
and the band-bending approximation [6, 17, 31, 36].  (The
energetic relations are comparable to that of Grove et al. [16],
except that: (1) the electrostatic potential is measured from the
conduction band minimum in the bulk, whereas Grove et al.
[16] measured it from the intrinsic Fermi level in the bulk; (2)
the surface state charge density is set to zero; and (3) Fermi
statistics are used, whereas Grove used Boltzmann statistics.)
At room temperature (300K) and concentrations used here,
the dopants are fully ionized.  Since the doping used here is p
type and the capacitance measures displaced majority carriers,
the minority carriers can be and are ignored, i.e., N

d
 = 0 ≈ n <<<

p.  The high frequencies used in the measurements preclude
the formation of an inversion layer.  Since inversion is not
allowed, n is negligible.

The electric potential in the insulator and the air is
determined by solving Laplace’s equation.  The problem is
then specified by the boundary conditions.  Here, it is important
to note that the equations must be solved on a domain region

(1)
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that is sufficiently large so that further changes in the domain
size will have little or no effect on the calculated derivative of
the HF capacitance.  Here, the domain region must contain the
probe-tip and the neighborhood around the probe-tip, such
as the probe shaft near the probe-tip, the air surrounding the
probe, the oxide, and the doped semiconductor.

At the insulator-semiconductor boundary, the potential
is continuous, and the discontinuity of the normal component
of the electric-displacement vector depends on the trapped
interfacial charge.  For this work, the interfacial charge density
is set to zero.  Two Dirichlet boundary conditions are used;
one grounds the backplane of the semiconductor, and the
other one sets the bias along the probe boundary.  The
remaining outer boundaries of the domain satisfy Neumann
boundary conditions where the normal derivative of the
potential is set to zero.  (This is the simplest approximation to
impose on a supposedly sufficiently distant boundary.  It is
in-dependent of bias and domain size, and its effect on the
solution near the probe-tip ought to be within the “error” of
the calculation).  To remove the thermal equilibrium work-
function difference between the probe and the sub-strate in
the figure presentations, the Fermi levels of the probe and the
sample are shifted with respect to each other at steady-state
by the flat-band voltage, so that zero bias in the figures refers
to the flat-band condition in the doped semiconductor sample
beneath the probe-tip.  This convention follows that of Grove
et al. [16].

The net charge, Q, in the semiconductor is found by
volume integration, i.e.,

Q = q ∫ d3x (N
d
 - N

a
 + p - n).

The HF capacitance is determined by subtracting the
results from two steady-state solutions with biases that differ
by ∆V, and calculating ∆Q/∆V.  The HF capacitance is
calculated for a range of biases and spline fitted.  The
derivative of the HF capacitance is found by differentiating
the spline curve.  These considerations guided the model
calculations that are reported here.

Uniform Doping

Geometry

When the configuration of the SCM measurement is
such that the conical-shaped probe exhibits cylindrical
symmetry, the central axis of the probe is oriented in a direction
normal to the surface of the sample, and the sample is uniformly
doped, the geometry of the combined system exhibits
cylindrical symmetry, and the system can be modeled as a 2D
problem.  Here, the probe shape is modeled after a commercially
available probe.  The probe is conically shaped with a rounded
tip; the probe-tip radius of curvature is 0.01 µm, and the cone
apex half-angle is 10°.  {For sake of easy modeling of the

contact region between the probe-tip and the oxide boundaries,
the probe-tip is blunted slightly by truncation (plane
intersection), so that the angle between the two intersecting
surfaces is 10°}.  The probe length is set by the radial cutoff
distance, as explained later.

The model domain contains three subregions: the
semicon-ductor substrate region, the insulating oxide layer
re-gion, and the air or ambient region surrounding the probe.
A cross section of the model geometry for the probe-sample
structure is shown in Figure 1.  The coor-dinate system is
chosen such that the central axis of the cylindrical coordinate
system is the y axis.  The y = 0 plane forms the SiO

2
-Si interface

boundary, the positive y axis is directed into the substrate
region, and the negative y axis passes through the probe axis.
The radial direction is along the x axis.  This is upside down

(2)

Figure 1.  Geometry of the model structure.  The three re-gions
are the semiconductor region (0 ≤ y), the oxide region (-h

ox
 ≤ y

≤ 0), and the ambient region (y ≤ -h
ox

), where h
ox

 refers to the
oxide thickness.  The oxide thickness is 0.01 µm, and the probe-
tip radius of curvature is 0.01 µm.  The radial cutoff distance is
0.1 µm; the semiconductor substrate thickness is 0.05 µm.
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from the usual SCM configuration.  The semiconductor region
is where y ≥ 0, the oxide region is where -h

ox
 ≤ y ≤ 0, and the

ambient region is where y ≤ -h
ox

, where h
ox

 is the oxide layer
thickness.  The unit of length is expressed in µm, and here, h

ox

= 0.01 µm.
The size of the substrate region is set in part by the

radial cutoff distance or length of the x axis. Since the interest
here is to maintain the spatial resolution of the measurement
near that of the probe-tip radius of curvature, the radial cutoff
distance was set to usually 10 times the probe-tip radius of
curvature. Here, the radial cutoff distance was set to 0.2 µm
when 1 x 104 µm-3≤ N

a
≤ 9 x 104 µm-3; 0.1 µm when 1 x 105 µm-3

≤ N
a
 ≤ 3 x 107 µm-3; and 0.05 µm when 4 x 107 µm-3 ≤ N

a
 ≤ 1 x 108

µm-3.

The substrate depth (y) cutoff was determined so that
the substrate region could contain the depletion region, and
the charge neutrality condition could be maintained deep
inside the substrate for the given max-imum bias.  The maximum
bias was roughly set by de-ter-mining when the contour value
of N

a
/10 reached the radial cutoff distance.

The length of the probe is determined by using a circular
arc to form the outer boundary of the ambient region and
requiring the arc to intersect perpendicularly with the
boundaries of the probe and the oxide.  Therefore, the probe
length is set by the radial cutoff distance.  Changing the radial
cutoff distance changes the probe length, and for a nonzero
bias, this changes the charge on the probe, the net charge in
the semiconductor, and the capacitance.  However, when the

Figure 2.  Contour plot of the net charge density distribution,
where the dopant density is 1 x 104 µm-3, and the bias is 0.2 V.
The radial cutoff distance is 0.2 µm; the semiconductor
substrate thickness is 0.2 µm.  Contour levels are expressed in
units of µm-3.

Figure 3.  Contour plot of the net charge density distri-bution
where the dopant density is 1 x 105 µm-3, and the bias is 0.2 V.
The radial cutoff distance is 0.1 µm; the semiconductor
substrate thickness is 0.1 µm.  Contour levels are expressed in
units of µm-3.
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radial cutoff distance is sufficiently large, the change in the
derivative of the high-frequency capacitance is found to be
small and is within the estimated error of the calculation.

This condition, where the calculated derivative of the
high -frequency capacitance becomes insensitive to changes
in the size of the domain, is both important and necessary for
modeling an SCM measurement where the objective is to
determine a meaningful absolute measurement and not just a
relative measurement.  Conversely, for an SCM measurement
to be practical, the derivative of the high-frequency
capacitance must be insensitive to and separable from the
stray capacitances in the system.

Method of solution

To solve both the nonlinear Poisson equation in the
semiconductor region and the Laplace equation in the ox-ide
and the ambient regions, we used PLTMG (Piece-wise Linear
Triangular finite-element MultiGrid) [5], a software package
for solving elliptic partial differential equations for scalar

problems in two dimensions.  The package provides support
for adaptively refining the mesh and for plotting the contours
or the surface profile of the solution or a function of the
solution.

To calculate the capacitance as a function of applied
bias V

B
, the depletion region must be suitably meshed to have

an accurate volume integration to find the net charge in the
semiconductor.  To help reduce the grid dependence in the
charge calculations, the procedure used here was to find one
grid that would suitably mesh the depletion region at the largest
allowed bias setting and then use that mesh for solutions at
other smaller biases, starting from deep depletion (V

B
 > 0) and

mov-ing to accumulation (V
B
 < 0).  This is done for each dopant

density considered in the work.
Finding a suitable mesh over the maximal depletion

region was difficult.  The default adaptive meshing al-gorithm
used in PLTMG was found to mesh the region around the
probe-tip in the ambient region quite well, but only at the
expense of the oxide and the substrate regions; they were
meshed too coarsely.  Because PLTMG provides little direct
control of the mesh step size, and the user options for the
adaptive meshing al-gorithm are limited, the only way to cause
PLTMG with-out modification to form a different mesh is to
per-turb the equation that PLTMG is trying to solve.  One
method for improving the mesh was found by: (1) equalizing
the media by setting the relative dielectric constants to one;
(2) perturbing the doping profile near the oxide-semi-conductor
surface to force the meshing algorithm to sense the
nonuniformity; and (3) solving this perturbed problem at a
bias of 5 V or 10 V beyond that for the max-imal depletion
region used in the capacitance calcu-lations.  Here, the
perturbed dopant density is allowed to vary quadratically in
the x direction and decay normally (Gaussian) in the y
direction; the perturbation is localized near the SiO

2
-Si

boundary.  The perturbation is used only during the mesh
refinement  procedure; after finding a suitable or much
improved mesh, the correct equations are solved to find the
capacitance.

The mesh is undoubtedly one source of error in the
calculation.  Some error may be expected at larger biases when
the depletion region penetrates into regions that are less
densely meshed.  Estimating this kind of error with PLTMG is
difficult.  One method would involve halving the stepsize of
the finest mesh, but this is not possible, because PLTMG
provides no option for uniformly refining the finest mesh,
unlike for the initial coarse mesh.  The only option available
then is to add points to the mesh.  For meshes containing 1 x
104 and 2 x 104 points, the derivative high-frequency
capacitance curves were compared and were found to differ
by less than 0.5% and 3% for low and high dopant densities
of 1 x 105 µm-3 and 1 x 108 µm-3, respectively.  While the number
of mesh points is important, this approach is somewhat open
to question, because there is little user control over the

Figure 4.  Contour plot of the net charge density distribution
where the dopant density is 1 x 106 µm-3, and the bias is 1.2 V.
The radial cutoff distance is 0.1 µm; the semiconductor
substrate thickness is 0.06 µm.  Contour levels are expressed
in units of µm-3.
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placement of the points.  However, the results are encouraging.
For this work, the meshes used 2 x 104 points.

Another contribution to the error of the calculation
involves satisfying the boundary conditions.  As the bias is
increased above zero, the depletion region forms and expands
along the SiO

2
-Si boundary with a finite skin-depth.  At large

biases, the depletion region can expand beyond the radial
cutoff distance and move beyond the boundaries of the
domain, and of course, any net charge outside the domain is
neglected in the capacitance calculations.  The maximum bias
used in a capacitance calculation was determined by observing
the depletion region expand along the oxide boundary as a
function of bias until the net number density at the radial
cutoff distance became nearly 10% of the dopant density.
The HF capacitance and the derivative of the HF capacitance
may be expected to exhibit a larger percentage of this kind of
error at the larger biases.  It follows then that the greatest
accuracy and resolution occur when the depletion region is
small, when the bias is small, i.e., near the flat-band condition.

Results of calculations

In order to help interpret capacitance data and the
model accuracy, we show, in Figures 2 through 6, contour

plots of the net charge density distribution in the
semiconductor calculated as a function of dopant density
and applied bias.  The dopant density and the applied bias
are: 1 x 104 µm-3 and 0.2 V in Figure 2; 1 x 105 µm-3 and 0.2 V in
Figure 3; 1 x 106 µm-3 and 1.2 V in Figure 4; 1 x 107 µm-3 and 4.4
V in Figure 5; and 1 x 108 µm-3 and 5.0 V in Figure 6.  The latter
bias is the approximate breakdown voltage of the oxide.

The shape of the depletion region depends on the
bias and the dopant density via the characteristic screening
length in the semiconductor.  The shape of the depletion
region is more hemispherical at lower dopant densities and
flatter at higher dopant densities due to screening.  The size
and shape of the depletion region sets the resolution of the
measurement, and this sets the maximum bias of the
measurement.  In calculations with dopant densities below 1 x
105 µm-3, it was found that the depletion expanded with bias
into regions less dense-ly meshed in the bulk than that near
the surface, so that the volume integral of the calculated charge
was less accurate.

Figures 7 to 10 present the results of calculations of
the capacitance and the derivative of the capacitance for a
range of dopant densities from 1 x 105 µm-3 to 1 x 108 µm-3 in

Figure 5.  Contour plot of the net charge density distri-bution
where the dopant density is 1 x 107 µm-3, and the bias is 4.4 V.
The radial cutoff distance is 0.1 µm the semiconductor
substrate thickness is 0.02 µm.  Contour levels are expressed
in units of µm-3.

Figure 6.  Contour plot of the net charge density distribution
where the dopant density is 1 x 108 µm-3, and the bias is 5.0 V,
the breakdown voltage of the oxide.  The radial cutoff distance
is 0.05 µm the semiconductor substrate thickness is 0.01 µm.
Contour levels are expressed in units of µm-3.
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unit increments per decade.  Two different values of the radial

cutoff distance were used in the calculations for this large
range of dopant densities.  (The domain size is set by the
radial cutoff distance, the radial cutoff distance sets the probe
length, and the probe length controls the stray capacitance).
Figures 7A and 7B present the capacitance calculations where
the radial cutoff distances are 0.1 µm and 0.05 µm, respec-tively.
Figure 8 presents the calculated derivative HF capacitance.
The dotted line in Figures 7A and 8 shows the approximate
maximum bias for which the calculations are believed to be
valid; the depletion region expands outside the domain at
larger biases.  Two noticeable features of Figure 8 are that the
curves tend to peak at values of positive bias (depletion),
except for the lowest dopant density (1 x 105 µm-3), and that
the peaks move with dopant density toward higher bias.  The
smooth spacing between the curves in Figure 8 suggest that
the domain size and the adaptive meshing density were
suitably determined so that the calculated derivative
capacitance curves appear to be insensitive to the changes in
the domain size.  This is a necessary condition, otherwise the
modeling and the measurement would be impractical.

Figure 9 presents derivative capacitance calculations
showing sensitivity to the dopant density variations, the
domain size, and the mesh.  Curves A, C, and D involve different
meshing parameters used during the adaptive mesh refinement
procedure, but with the same dopant density.  Curves A and E
involve similar meshing parameters, but with different dopant
densities.  Curves A and B involve the same meshing
parameters, same dopant density, but with different domain

Figure 7.  The high-frequency capacitance (solid line) calculated for a range of dopant densities N
a
.  The dopant density range is:

(A) 1 x 105 to 3 x 107 µm-3, where the radial cutoff distance is 0.1 µm and (B) 4 x 107 to 1 x 108 µm-3, where the radial cutoff distance
is 0.05 µm.  The dotted line in (A) refers to the approxi-mate maximum bias for which the calculation is valid.  The range is stepped
in unit increments per decade.  The capacitance is scaled by the elementary charge, q = 1.602 x 10-19 C.

Figure 8.  The derivative high-frequency capacitance (solid
line) and the approximate maximum bias (dotted line) calculated
for a range of dopant densities N

a
.  The dopant density range

is 1 x 105 to 1 x 108 µm-3.  The range is stepped in unit increments
per decade.
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sizes.  The dopant density is 1 x 107 µm-3 for curves A, B, C and
D, and is 9 x 106 µm-3 for curve E.  The radial cut-off distance is
0.1 µm for curves A, C, D, and E, and is 0.05 µm for curve B.
The closeness of curves A and B (< 2%) re-veals that the
domain size is sufficiently large and the probe-tip is suitably
represented so that the calculation is relatively insensitive to
small changes in the domain size.  The distance between curves
A and D (≈ 8%) reveals the sensitivity of the calculation on
the domain mesh.  A better mesh would reduce this value.  The
distance between curves A and E reveals the sensitivity of the
method in determining dopant density at this concentration.
Curves A and E are used in Figure 8.

Figure 10 presents conversion curves relating dopant
density with derivative HF capacitance data for a
representative set of biases.  Curves A, B, C, D, and E refer to
bias settings of 0.0, 0.5, 1.0, 1.5, and 2.0 V, respectively.  The
curves differ in length as a function of positive bias.  This is
due to limiting the maximum domain size in the calculations.
For a given domain size and positive bias, there is a critical
value of dopant density below which the depletion region will

expand beyond the bounds of the domain, and the capacitance
calculations would not be valid.  (Recall that the dotted line in
Figure 8 indicates the approximate maximum bias for which
the calculations are believed to be valid).  The curvature and
the bias dependence of the conversion curves reveal the
importance of reproducing identical measurement parameters
in order to extract accurate values of the dopant density from
SCM measurements.

Database

Since SCM data are a smooth function of geometrical
parameters, such as the probe-tip radius of curvature, the
probe cone apex angle, and the oxide thickness, it is then
possible to form a database set of calculations with which one
may use linear interpolation to quickly analyze a set of SCM
measurements [23].  Such a database is planned for future
work.

Graded Doping

One dimension

The SCM technique can image a semiconductor with
contrast to variations in dopant density and spatial resolution
of the order of the probe-tip diameter.  The previous section
sought to interpret SCM measurements of materials where
the doping is uniform, but there is also a need for interpreting

Figure 9.  Sensitivity of the calculated derivative high
frequency capacitance.  The dopant density is 1 x 107 µm-3 for
curves (A, B, C and D) and is 9 x 106 µm-3 for curve (E).  The
radial cutoff distance is 0.1 µm for curves (A, C, D, and E) and
is 0.05 µm for curve (B).  Curves (A, C, and D) involve different
meshing parameters, but the same dopant density; curves (A
and E) involve similar meshing parameters, but different dopant
densities; and curves (A and B) involve different radial cutoff
values.

Figure 10.  Conversion curves relating dopant density with
SCM derivative high-frequency capacitance data.  Curves A,
B, C, D, and E refer to bias settings of (0.0, 0.5, 1.0, 1.5, and 2.0)
V, respectively.
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SCM measurements of materials where the doping is not
uniform, and the interest is in scanning across graded dopant
junction profiles.  While the pn-junction may be one of special
interest, this paper restricts its consideration to one example
of a model high/low like-dopant graded profile junction.  The
goal here is to initiate a preliminary investigation of the charge
distribution near a junction and its redistribution when probed
during an SCM measurement.

The model high/low like-dopant graded profile
junc-tion, which is defined here and used in the remainder of
the paper, is presented as the dotted line profile in Fig-ure 11.
The dopant profile is characterized by variation in one direction,
the x direction, with different left- and right-side values of the
dopant density, and a graded dopant profile in the transition
region.  The transition region is centered near the origin, x = 0,
and its diameter is set to the value of the probe-tip radius of
curvature of the previous sections, 10 nm.  The acceptor
dopant den-sity is 1 x 107 µm-3 for x ≤  0.005 µm, and is 1 x 106

µm-3 for x ≥ 0.005 µm.  The graded dopant profile is
approximated by a cubic-spline interpolating polynomial that
matches both the function and the first derivative at the
endpoints of one interval for the transition region, i.e.,
Hermite’s formula [35].  The dopant profile function and its
first derivative are continuous.

The software package COLSYS [2, 3, 4] was used to
solve Poisson’s equation in one-dimension for the equilibrium

solution in the semiconductor.  Figure 11 presents the results
of this calculation for the net charge density distribution (solid
line); negative values indicate depletion and positive values
indicate accumulation.  Holes near the junction move from
regions of high density to regions of low density, as is well
known.  The calculated electric potential distribution is the
equilibrium solution deep in the bulk of the semiconductor,
and this is used to specify the Dirichlet boundary condition
along the grounded backplane of the semiconductor for the
2D and 3D problems that are discussed in the following
sections.

Two dimensions, no probe

This section considers the charge distribution near a
high/low like-dopant graded profile junction of a model 2D
structure without the presence of an SCM probe.  The model
geometry is shown in Figure 12.  The semiconductor region is
given by -0.05 ≤ x ≤ 0.05 and 0.0 ≤ y ≤ 0.05; the oxide region is
given by -0.05 ≤ x ≤ 0.05 and -0.01 ≤ y ≤ 0.0 ; and the air or

Figure 11.  Dopant density calculations for the 1D model
high/low like-dopant graded profile junction.  The net charge
density distribution is given by the solid line, and the dopant
density distribution is given by the dotted line.  The transition
region is centered at x = 0 and its full width is 0.01 µm. Figure 12.  Geometry of the 2D model high/low like-dopant

graded profile junction with no probe near the junction.  The
semiconductor region is given by -0.05 ≤ x ≤ 0.05 and 0.0 ≤ y ≤
0.05; the oxide region is given by -0.01 ≤ y ≤ 0.0 ; and the air or
ambient region is the semicircular bounded region where y  ≤
-0.01.  The two dotted lines bound the transition region, -0.005
≤ x ≤ 0.005.  There is translational invariance in the direction
normal to the plane of the figure.
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ambient region is the semicircular bounded region where y  ≤
- 0.01.

The software package PLTMG was used to solve
Poisson’s equation.  The electric potential distribution of the
previous section was used to specify a Dirichlet boundary

Figure 13.  Results of calculations for the 2D model high/low
like-dopant graded profile junction with no probe near the
junction.  (A, across at top) Surface profile of the net charge
density distribution, and (B) line profiles of the net charge
density distribution at y = 0 (solid line) and at y = 0.05 (dotted
line).  Net charge density values less than zero indicate
depletion and values greater than zero indicate accumulation.

Figure 14.  Geometry of the 2D model high/low like- dopant
graded profile junction with a V shaped probe centered above
and along the junction.  The semiconductor region is given
by -0.1 ≤ x ≤ 0.1 and 0.0 ≤ y ≤ 0.05; the oxide region is given by
-0.01 ≤ y ≤ 0.0; and the air or ambient regions border the probe
region where y ≤ -0.01.  The two dotted lines bound the
transition region, -0.005 ≤ x ≤ 0.005.  There is translational
invariance in the direction normal to the plane of the figure.
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condition along the grounded backplane (y = 0.05) of the
semiconductor region.  Neumann boundary conditions were
used along the remaining outer boundaries.  The  dopant
density distribution in the semiconductor region is that of the
previous section.

Calculated results are shown in Figure 13.  Figure 13A
presents a surface profile of the net charge density dis-tribution,
and Figure 13B presents line profiles of the net charge density
distribution across the junction along the SiO

2
-Si interface at

y = 0 (solid line) and along the Si backplane at y = 0.05 (dotted
line).  Net charge density values less than zero indicate
depletion, and values greater than zero indicate accumulation.
Some charge redistribution occurs near the junction near the
SiO

2
-Si boundary in accord with the spreading of the electric

field distribution; the depletion peak appears to be more
enhanced than that for accumulation.

Two dimensions, 2D probe

This section considers the charge distribution near a
high/low like-dopant graded profile junction with a biased V
shaped probe centered above and along the junction.  This is
a 2D problem.  The geometry of the model is shown in Figure
14.  The semiconductor region is given by -0.1 ≤ x ≤ 0.1 and 0.0
≤ y ≤ 0.05; the ox-ide region is given by -0.1 ≤ x ≤ 0,1 and -0.01
≤ y ≤ 0.0; and two air or ambient regions border the probe
region where y ≤ -0.01.

The software package PLTMG was used to solve
Poisson’s equation.  Dirichlet boundary conditions are used
to specify the electric potential along the grounded backplane
(y = 0.05) of the semiconductor region deep in the bulk as in
the previous section and along the boundary of the probe to
specify the applied bias.  Neumann boundary conditions are
used along the remaining outer boundaries.  The dopant
density distribution in the semiconductor region is that of the
previous section.

The results of the calculation are presented in Figure
15; the surface profile of the net charge density distribution is
shown for a 1.0 V bias.  Net charge density values less than
zero indicate depletion, and values greater than zero indicate
accumulation.  For increasing positive bias, the depletion
region expands near the surface toward the higher dopant
density region; see Figure 13 for comparison.  The
accumulation region located near the surface and the lower
doped side of the junction is depressed.  The presence of the
junction lessens the expansion of the depletion region into
the lower doped region.  The geometry is similar to that of
parallel capaci-tance.

Two dimensions, 3D probe

This section considers the charge distribution near a
high/low like-dopant graded profile junction with a biased
conical-shaped probe centered above the junction, but

Figure 15.  Surface profile of the net charge density distribution calculated for 1.0 V bias for the model shown in Figure 14.  Net
charge density values less than zero indicate depletion and values greater than zero indi-cate accumulation.
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oriented 10° off the normal to the oxide surface.  This is a 3D
problem.  Because software was not available that could both
solve the nonlinear Poisson equation in the semiconductor
and model the geometry of the air or ambient region
surrounding the probe, it was necessary to break the problem
into two parts.

In order to model the geometry of both the oxide region
and the ambient region and solve Laplace’s equation, the finite-
element software package ANSYS [1] was used.  In order to
model the semiconductor region and solve Poisson’s equation,
the collocation software package ESPDESC (Elliptic Systems
of Partial Differential Equations Solved by Collocation) [26]
was used.  The solution is found by relaxing and matching the
boundary conditions along the oxide-semiconductor
boundary, and iterating to self-consistency [26, 27, 32, 33, 34].
(Relaxing refers to an iterative procedure for determining the
boundary conditions between two bordering domain regions;
the solutions from two successive iterations are averaged
before proceeding with the next iteration).  From this, the
capacitance may be found [8, 9, 26].  The model geometry of
the oxide and the ambient regions is presented in Figure 16.
The oxide region is given by -0.1 ≤ x ≤ 0.1, -0.01 ≤ y ≤ 0.0, and
0.1 ≤ z ≤ 0.0; and the ambient region is the bound region where
y ≤ -0.01.  The probe-tip radius of curvature is 0.01 µm; the

probe cone apex half-angle is 10° and the central axis of the
probe is tilted 10° away from normal toward the x axis as in a
commercial instrument.

The dopant distribution is that of the previous sec-tion.
The dopant junction is centered at x = 0, and the do-pant
distribution is translational invariant in both y  and z directions.
The semiconductor region is given by -0.1 ≤ x ≤ 0.1, 0.0 ≤ y ≤
0.05, and -0.1 ≤ z ≤ 0.0.

The boundary conditions are set as in the previous
section.  Dirichlet boundary conditions are used to spec-ify
the electric potential along the grounded backplane (y = 0.05)
of the semiconductor region deep in the bulk and along the
boundary of the probe for the applied bias voltage.  Neumann
boundary conditions are used along the remaining outer
boundaries.

The results of the calculation are shown in Figure 17;
the surface profile of the net charge density distribution is
shown for the z = 0 plane for 1.0 V bias.  Net charge density
values less than zero indicate depletion, and values greater
than zero indicate accumulation.

Again, as in the previous section, for increasing
positive bias, the depletion region expands near the surface
toward the higher dopant density region; see Figures 13 and
15 for comparison.  The depletion region is more localized
near the probe-tip in Figure 17 than in Figure 15, as may be
expected to occur when comparing the results of a 2D and a
3D probe.  The accumulation region located near the surface
and the lower doped side of the junction is depressed.  The
presence of the junction lessens the expansion of the depletion
region into the lower doped region.

Summary

In order to help correlate SCM data with
semicon-ductor dopant concentrations, model capacitance
curves have been calculated for silicon.  For 2D cases, the
linear finite-element method is used to solve Poisson’s
equation in the semiconductor region and Laplace’s equation
in the oxide and the ambient regions.  For 3D cases, the
collocation method is used in the semiconductor region, and
the linear finite-element method is used outside this region.
For a given oxide thickness, probe shape, and probe-tip size,
the high-frequency capacitance is calculated for cases of
uniform doping for a range of dopant concentrations.  The
derivative high-frequency capacitance is calculated and is
used to form a set of conversion curves relating dopant density
with derivative high-frequency capacitance data.  For uniform
doping, the theory can be used to form a data-base for rapid
interpretation of SCM measurement data.

For a model high/low like-dopant graded profile
junc-tion, the net charge density distribution is found for cases
with no probe, a V shaped probe, and a conical-shaped probe
centered near the junction.  The presence of the junction

Figure 16.  Geometry of the model 3D structure for the oxide
and the air or ambient regions with a coni-cal-shaped probe
centered above the junction.  The oxide region is given by -0.1
≤ x ≤ 0.1, -0.01 ≤ y ≤ 0.0, and -0.1 ≤ z ≤ 0.0.  The ambient region
surrounds the probe region and is the bounded region where
y ≤ -0.01.  The probe-tip radius of curvature is 0.01 µm the
probe cone apex half-angle is 10°; and the central axis of the
probe is tilted 10° away from normal toward the x axis.  The
semiconductor region (not presented) is adjacent to the oxide
region and is given by -0.1 ≤ x ≤ 0.1, 0.0 ≤ y ≤ 0.05, and -0.1 ≤
z ≤ 0.0; the dopant junction is centered at x = 0, and the dopant
distribution is translational invariant in both y and z directions.
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lessens the expansion of the depletion region into the lower
doped region.  The geometry is similar to that of parallel
capacitance, and understanding the role of the equilibrium
charge distribution near the junction is important in determining
the doping profile around the junction.

Appendix

Overview of models

A number of models have been used in the literature
to interpret SCM data, and they differ by their degree of
approximation.  The fast models tend to use analytic mod-els
such as the 1D metal-oxide-semiconductor capacitor (MOSC)
model [16], and the slower models tend to use 2D or 3D finite-
element method (FEM) calculations.  This section considers
five models; two are slow and three are fast.  The two slow
FEM-based models compare effects due to probe shape and
provide a reference with which to compare the results of the
three fast 1D MOSC-based models.  For a given geometric
structure, the models are explained, and the curves of the
derivative of the high-frequency capacitance are calculated
and plotted together for comparison.

The domain geometry is shown in Figure 1 and is the
same as that presented for the case of uniform doping.  The

probe-sample system exhibits cylindrical sym-metry with
dependence only along the radial and cylindrical axes.  The
probe shape is conical with a rounded tip.  The probe-tip rests
on the oxide surface, and the probe-axis is oriented normal to
the oxide surface.  The probe-tip radius of curvature is 0.01
µm, and the probe-cone apex half-angle is 10°.  The oxide
thickness is 0.01 µm.  The radial axis cutoff distance is 0.1 µm.
Dirich-let boundary conditions set the potential for the biased
probe and the grounded semiconductor.  Neumann boundary
conditions are used on the remaining outer boundaries.
Calculations are done for two dopant density (N

a
) values, one

low (1 x 105 µm-3) and one high (1 x 108 µm-3).

FEM: Conical probe (model A)

To provide a frame of reference for comparing models,
the first slow model or Model A is the same numerical
approach that is used in much of this paper.  The linear finite-
element software package PLTMG is used to model the conical
probe and to solve Poisson’s equation in the semiconductor
region and Laplace’s equation in the oxide and ambient
regions.

FEM: Spherical probe (model B)

To compare effects due to probe shape, the second
slow model or Model B replaces the conical probe of Model A

Figure 17.  Surface profile of the net charge density distribution in the z = 0 plane calculated for 1.0 V bias for the model involving
Figure 16.  Net charge density values less than zero indicate depletion and values greater than zero indicate accumulation.
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with a spherical probe.  The probe-tip radius of curvature is
the same for both models, and PLTMG is used to solve the
problem numerically.

One way to speed the use of slow FEM-based models
is to note that the capacitance curves are smooth functions of
the model parameters.  Thus, it is possible to form a database
of calculations whereby linear interpolation may be used to
extract dopant densities.  But this requires further work.

1D MOSC: Conical probe in air on oxide (model C)

Contrasting the two slow FEM-based models are three
fast 1D MOSC-based models.  One fast model [23] or Model C
assumes that the probe-air-oxide-semiconductor capacitance
(per unit area) can be approximated to lowest order by first
partitioning the conical probe into a set of concentric rings
and then assuming that the capacitance (per unit area) between
a ring and the semiconductor may be found by using the 1D
MOSC model.  With the air-gap or probe-to-oxide distance
known, the net air-oxide capacitance (per unit area) can be
found.  {The oxide capacitance (per unit area) is equal to ε

0
ε

ox
/

t
ox

, t
ox

 refers to the oxide thickness.  The capacitances (per
unit area) of the air and oxide, being in series, can be added as
in a parallel circuit to form a net oxide capacitance (per unit
area) that is needed by the 1D MOSC model}.  With this and
the 1D MOSC model, the radial distribution of the net air-
oxide-semiconductor capacitance (per unit area) can be found.
This radial distribution is similar to having capacitances in
parallel, and the net capacitance is found by summing the

capacitances  in  series,  i.e.,  by integration in the radial
direction.

1D MOSC: Spherical probe in oxide (model D)

Another fast model [18, 20, 21] or Model D is more
robust in finding the net oxide capacitance (per unit area) that
is needed by the 1D MOSC model.  The probe is modeled to
lowest order by a sphere embedded in oxide.  The net oxide
capacitance (per unit area) is determined by finding the
capacitance (per unit area) of a sphere-oxide-metal system
where the semiconductor is treated as being metallic.  The
probe is biased at 1 V, the metal is grounded at 0 V, and the
method of images is used to solve the electrostatics problem.
The normal component of the electric field along the oxide-
metal boundary gives the surface charge density distribution,
which in turn gives the capacitance (per unit area) of the
system.  This capacitance (per unit area) is then equated to
the net oxide capacitance (per unit area).  With this and the 1D
MOSC model, the radial distribution of the net probe-oxide-
semiconductor capacitance (per unit area) is determined.  The
net capacitance is then found by integration as in Model C.

Spherical probe in air on oxide (model E)

An interesting improvement to Model D is Model E.
The probe is again spherical, but now it is surrounded by air
and is set on the uniformly thick oxide layer.  The net oxide
capacitance (per unit area) is determined as before by finding
the capacitance of a model electro-statics problem; i.e., the
semiconductor is treated  as being metallic and is grounded at

Figure 18.  Derivative of the high-frequency capacitance for the five models.  The dopant density (N
a
) is (A) 1 x 105 µm-3 and (B)

1 x 108 µm-3.  The vertical dotted line at 0.2 V bias in (A) is the approximate maximum bias for which the calculations are valid.
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0 V, and the sphere is biased at 1 V.  While a method of images
solution would be needed here to qualify it as a fast method,
we used PLTMG to find the normal component of the electric
field along the oxide-metal boundary.  This gives the surface
charge density distribution, which in turn gives the radial
distribution of the net oxide capacitance (per unit area).  The
1D MOSC is used as before in Model D to find the net
capacitance.

Results and comparisons of models

Figure 18 shows the derivative of the high-frequency
capacitance of the five models, where the dopant densities N

a

are 1 x 105 µm-3 (Fig. 18A) and 1 x 108 µm-3 (Fig. 18B).  The
vertical dotted line at bias 0.2 V in Figure 18A is the approximate
maximum bias for which the calculations are valid.  At larger
bias, the depletion region expands beyond the set boundaries
of the domain region, and the net charge that is outside the
set boundaries is not included in the calculation of the
capacitance.  (The domain size is set, in part, by the radial
cutoff distance, and this is determined subjectively as
explained in the section entitled Geometry under the main
heading Uniform Doping.  Here, the radial cutoff distances are
0.1 µm and 0.05 µm for dopant densities 1 x 105 µm-3 and 1 x 108

µm-3, respectively).
The degree of agreement (comparative scaling) of the

results of the fast 1D MOSC-based models and the slow FEM-
based models may be expected to depend, in part, on the
degree to which the assumptions of the 1D MOSC model are

satisfied.  The best agreement may be expected at high dopant
densities where the screening length is small compared to the
probe-tip radius of curvature and the oxide thickness.  The
worst agreement may be expected at low dopant densities
where the screening length is large compared to the probe-tip
radius of curvature and the oxide thickness.

Figure 19 shows the calibration or conversion curves
relating dopant density with derivative high-frequency
capacitance data at zero bias (flat-band) for the five models as
calculated (Fig. 19A) and scaled (Fig. 19B) to the value of
model A at the dopant density value 7 x 106 µm-3.  The difference
between curves A and B shows that probe-shape effects
become more pronounced at lower dopant densities, as may
be expected.  The fast 1D MOSC-based model curves C, D,
and E deviate significantly from the slow FEM-based model
curves A and B, i.e., curves A and B show more curvature than
curves C, D, and E.

While the fast 1D-MOSC-based models can provide
qualitative information in the matter of seconds compared to
hours for a slow FEM calculation, these figures show the
importance of relating the 1D-MOSC-based results to the more
accurate FEM based results.  This observation is the basis for
proposing the use of fast models that interpolate over a
database of calculations of slow FEM-based calculations in
order to have both speed and accuracy.

Figure 19.  Conversion curves relating dopant density with derivative high-frequency capacitance data at zero bias for the five
models as (A) calculated and (B) scaled to the value of model A at dopant density value 7 x 106 µm-3.
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Discussion with Reviewers

D.J. Thomson:  Could the authors comment about the
“resolution” of SCM given their calculations.  For example, if
the objective was to measure doping concentrations to 10%
accuracy, what do the authors’ calculations predict about the
limits of SCM for the particular cases they have simulated?
Authors:  Determining the “resolution” is rather complicated
at this time.  Uncertainties in the measurement and the model
parameters must be accounted for in order to ascribe an
uncertainty to a value of doping.  This has yet to be done, but
some sense of the “resolution” (within the constraints of the
model) may be inferred from the conversion curves presented
in Figure 10.  The curves are far from horizontal suggesting
that the resolution could be within the 10% criterion for very
well controlled experimental situations.

D.J. Thomson:  Could the authors also comment on the
applicability of their techniques to the interpretation of SCM
data from “real” devices where there are multiple doped
regions?
Authors:  Interpreting SCM data from “real” devices is
complicated by changes in things that are both included and
not included in the model.  There are doping gradients, changes
in electrical type, charging, surface contamination, changes
in oxide thickness, probe-tip, etc.  The database was calculated
for uniformly doped material under idealized conditions.
Therefore, the database ought to apply to profiles that are
near these idealized conditions (i.e., the doping gradient is
not too steep), where the quasi-neutrality condition is satisfied
near the measurement point.  It remains to be determined how
best to implement or augment the database for profiles where
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quasi-neutrality is less satisfied.  Using an iterative procedure
with some self-consistency criterion has been suggested by
Clayton Williams at the University of Utah, but we have not
studied that yet.  Interpreting SCM data from “real” devices is
under development.

P. Koschinski:  Can the authors explain why the macroscopic
Poisson equation, which is a continuum equation, is applicable
to nanoscopic problems?  For example, at a doping level of 1.0
x 104 µm-3 (1.0 x 1016 cm-3), only one doping atom per µm depth
is present underneath the tip (doping concentration/tip area =
one-dimensional concentration under the tip).  For calculated
depletion regions, which extend below one µm, less than one
atom is forming the space charge region underneath the tip.
Can you comment on this rough estimation?
Authors:  When the doping of the semiconductor becomes
sufficiently low, so that the screening length becomes
sufficiently greater than the probe-tip radius of curvature and
the oxide thickness, the spatial discreetness of the impurities
will modulate the macroscopic charge density and be
detectable by the probe.  The uniformity assumption imposed
on the charge density by the form of Poisson equation used
here will become less valid and break down.  Apart from Figure
2 that is included for demonstration purposes, the lowest
dopant density for which the capacitance is calculated and
shown in Figures 7A and 8 is not 1.0 x 104 µm-3, but rather is 1.0
x 105 µm-3, where the screening length is near 13 nm, which is
a little larger than the 10 nm used here for the probe-tip radius
of curvature and the oxide thickness.  True, this is near the
edge.

P. Koschinski:  The extent of depletion or accumulation layers
in semiconductors does not only depend on tip bias and doping
level of the semiconductor but on localized surface and
interface charges, caused by surface states, too.  Since it is
known that, e.g., silicon exhibits various surface states with
different charges, can the authors explain why they believe
that their calibration curves calibrated for charge free surfaces/
interfaces are valid for real materials?  The same statement is
also true for charged deep traps in the bulk semiconductor.
Can the authors comment on this problem?
Authors:  The usefulness of the SiO

2
-Si interface in de-vices

stems from the fact that the interface state density can be
made very low by proper processing.  The model calculations
here are a reasonable first step toward interpreting SCM
measurements under idealized conditions, i.e., using a zero
interface-state charge density as a zeroth order approximation.
We agree that there is room for improvement.  The calculated
results need to be compared to measurements of real materials,
and this is the next step.  While real materials involve physics
beyond that modeled here, it is important that the
meas-ure-ments be made in a regime where the fewest
compli-cating physical mechanisms dominate, so that model

parameter extraction is both quick and meaningful.  We intend
to include a measure of charge trapping at some level of
approximation and see the effects.  As long as the surface
charge is constant under the probe, its effects can be
compensated with the alternating current (AC) bias voltage.

P. Koschinski:  All calculations are performed by solving
Poisson’s equation for a time independent non-equilibrium
case, i.e., a biased tip located above a semiconductor surface.
Can the authors explain why it is justified to neglect non-
equilibrium phenomena like recombination or generation
processes, by simply solving Poisson’s equation, since any
non-equilibrium state of a semiconductor is accompanied by
these phenomena?  For example, in the case of accumulation
one would expect an enhanced recombination of charge
carriers in the accumulation layer influencing the carrier
concentrations.
Authors:  The technique takes advantage of the fact that the
minority carrier recombination/generation times are much
larger than the majority carrier dielectric relaxation time.  The
low-frequency component of the applied bias modulation must
be sufficiently fast compared to that of minority carrier
generation, so that an inversion layer does not form.  As the
low-frequency component cycles through accumulation, the
number density of the minority carriers are duly reduced by
the enhanced number of majority carriers.  As the low-
frequency component cycles through depletion, the minority
car-riers are unable to respond in time, and due to their small
number density compared to that of the majority carriers, the
minority carriers are essentially frozen out and ignorable.  The
high-frequency component of the bias modulation involves
times much longer than the majority carrier response time, so
that the majority carriers can be modeled to lowest order of
approximation as responding nearly instantaneously to the
applied bias field.

P. Koschinski:  In real capacitance measurements an AC
component of the applied bias with a specific frequency is
necessary.  Since many phenomena in semiconductors are
depending on the frequency used for the measurement, like
charging of surface or bulk states, how can the calibration
curves obtained by time independent simulations be correlated
with measurements with time dependent signals?
Authors:  Again, to the lowest order of approximation, the
effects due to surface states are assumed to be negligible, and
the objective is to use frequencies at which all time dependent
factors other than those with which we are concerned are
frozen out and ignorable.

P. Koschinski:  The authors explained that the simulation
mesh was once generated with a perturbation approach for
the special case of maximum depletion and then used for all
other simulations.  What is the criterion that the authors believe
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that the resulting mesh is most appropriate for further
simulations?  Why did the authors not use the established
criterion for mesh generation of equidistributing of the local
discretization error of the whole simulation area?
Authors:  The approximate error in the solution in PLTMG is
an a posteriori local error estimate based on the jump
discontinuity of the normal direction of the vector function of
the product of the solution gradient and the dielectric constant.
The values of the dielectric constants of the three spatial
regions were found to sig-nificantly weight the refinement
procedure (ε

Si
 = 11.9, ε

oxide
 = 3.9, and ε

air
 = 1).  Equidistributing

the local discretization error of the whole simulation area caused
the bulk of the refinement to be in the air around the probe,
less in the oxide, and even less in the semiconductor.  The
mesh in the semiconductor region had comparatively large
triangles over areas where the net charge density had
significant variation.  This led to a coarse evaluation of the
volume integral of the net charge density to find the displaced
charge, and the capacitance.  Remeshing at different values of
bias would introduce additional error into the calculation.  See
Figure 9; compare lines A, C, D.

D.P. Kilcrease and D.C. Cartwright:  Can you quantify the
error of taking the interfacial charge density to be zero at the
insulator-semiconductor boundary?
Authors:  Not at this time.  This is something that needs to be
done.  A uniform distribution of trapped charge shifts the
capacitance curves along the direct current (DC) bias voltage
axis [7, 14, 16].  Some of this problem is removed by the
measurement procedure that is used to determine the bias
voltage near flat-band in the low doped region of a doping
profile.  A nonuniform distribution further complicates things
by allowing a spatial variation as well, and of course, this will
modulate the estimates of the doping profile.  Unless
varia-tions in the interface charge density can be ignored, the
usefulness of the SCM technique is questionable.

H. Edwards:  This work uses a semiclassical model for the
carriers.  Would a quantum treatment change the re-sults
significantly?
Authors:  A quantum treatment would be much more
com-plicated than that done here.  One thing that it would do
is make the carrier charge density at the SiO

2
/Si boundary go

to zero.  This becomes significant when inversion or
accumulation occurs.  The measure-ments are to be done near
flat-band and where inversion is not allowed to occur.  The
difference in accumulation should be small, since the field is
then mostly across the oxide.  Further, our spatial sizes are still
rather large (≥ 10 nm), so that the effects due to a quantum
treat-ment ought to be relatively small.  However, it is
some-thing that needs to be considered in the future.

H. Edwards:  One big question in SCM is how to set the DC

sample bias so that the true position of a pn junction may be
measured in a cross-sectional experi-ment.  Based on their
model, can the authors suggest the proper choice of DC bias
for such a measurement, as well as how to verify that the
correct bias is being applied?
Authors:  Generally, the DC bias should be chosen so that the
surface is held near flat-band.  Otherwise, the probe bias will
greatly alter the charge balance under the probe.  The bias can
be determined from the peak in the ∆C

HF
/∆V in a relatively

lightly doped region.  We have not yet modeled a pn junction
with this method.  The calculations have been for uniform
doping.  To interpret measurements by using a conversion
curve and a data-base, the doping profile needs to be slowly
varying, so that it varies relatively little over the region
perturbed by the probe.  The phase of the SCM signal changes
when crossing a pn junction, so this may be used to estimate
the junction boundary.

H. Edwards:  Spatial resolution is so far the weakest point of
SCM as applied to shallow-junction profiling.  Does this work
illuminate whether true nm-scale SCM im-aging will ever be
possible?
Authors:  We have not yet analyzed a profile with this method.
Spatial resolution depends, in part, on the probe-tip radius of
curvature and the signal-to-noise ratio of the instrument.  There
is a balance; smaller tips give less signal.  This is related to the
preceding question about the bias.  If the bias voltages can
keep the size of the depletion region near that of the probe-tip
size, there is hope.

H. Edwards:  The present work seems to target an accu-racy of
a few percent in the numerical solutions.  How-ever, variations
in oxide thickness, dielectric con-stant, surface charge,
interface-state density, trapped charge, and surface
contamination could change the sig-nal intensity by orders of
magnitude.  These variations also could effectively change
the voltage scale and shift the DC offset by several volts.
How do the authors plan to account for these important but
uncontrolled factors?  Is the model robust enough to extract
these parameters from real data?
Authors:  All these factors and effects are important, and they
complicate things.  There is probably insuffi-cient functional
dependence in the capacitance meas-urements by themselves
to independently resolve all the model parameters.  For the
measurements to be mean-ingfully interpreted, the
measurements must be done in a manner where the fewest
factors dominate and are cal-culable.  Consequently, some
control must be exercised over the sample preparation and the
measure-ment proc-ess.  In general, the inverse problem does
not have a unique solution, and other measurements need to
be made on the samples to determine some of the input
pa-rameters.  All these effects need to be considered, but they
require work beyond that presented here.



224

J.F. Marchiando, J.R. Lowney and J.J. Kopanski

C.C. Williams:  In the sections entitled Two dimen-sions, 2D
probe and Two dimensions, 3D probe, it is noted that the
depletion region expands into the highly doped side.  I believe
that this is due to the fact that the figure rep-resents the net
charge distribution and is not normal-ized against the
background concentration.  It would be more in-structive to
define a condition for de-pletion re-lated to a percent
modulation of the local car-rier density.  It would be interesting
to see whether the depletion really oc-curs toward the high
side.
Authors:  The depletion expansion toward the highly doped
side is due to the dopant density dependent work-function
difference.  The finite-sized probe-tip is an equipotential
surface that spans across the doping gradi-ent, and its
presence is felt across the gradient region.  The higher doped
side sees a relatively larger bias (deple-tion); the lower doped
side sees a relatively lower bias (accumulation).

Normalizing against the background concen-tration is
comparable to scaling that of the low doped re-gion with a
large value and to scaling that of the high doped region with
a low value, and this, of course, will shift the distribution to
the lower doped region.  A plot of ρ/N

a
 amplifies the

accumulation in the junction.  A plot of dρ/dV is similar to that
of ρ, except that: (1) the variation associated with the static
built-in field across the junction is suppressed; and (2) a small
variation is introduced at the surface near the probe that seems
unphysical and may possibly be due to the error of the
calculation.  Plots of (1/N

a
) (dρ/dV) and (1/p) (dρ/dV) show

distributions that are deeper and broader in the lower doped
region than in the higher doped region.  Rationalizing with N

a

magnifies small variations in ρ at the surface near the probe-
tip in a way that seems unphysical.  Rationalizing with p gives
a smooth distribu-tion at 1 V bias, but this has limits, because
at large bias part of the lower doped region becomes fully
depleted and p becomes negligible.  Then ρ/p becomes
singular.  So yes, it is possible to form a distribution with ρ that
is shifted more towards the lower doped region than the higher
doped region, as motivated by that expected when considering
uniformly doped regions separately.  But then too, the
capacitance is a measure of charge, a volume integral of the
displaced charge density, that is a quantity that is not
rationalized, and here, the main contribution comes from the
higher doped region.


