eCM (Eur Cell Mater / e Cells & Materials) Not-for-Profit Open Access
Created by Scientists, for Scientists
 ISSN:1473-2262         NLM:100973416 (link)         DOI:10.22203/eCM

2021   Volume No 42 – pages 43-62

Title: Dentine sialophosphoprotein signal in dentineogenesis and dentine regeneration

Authors: MM Liu, WT Li, XM Xia, F Wang, M MacDougall, S Chen

Address: Department of Developmental Dentistry, School of Dentistry, University of Texas Health San Antonio, San Antonio, Texas 78229, USA

E-mail: chens0 at

Abstract: Dentineogenesis starts on odontoblasts, which synthesise and secrete non-collagenous proteins (NCPs) and collagen. When dentine is injured, dental pulp progenitors/mesenchymal stem cells (MSCs) can migrate to the injured area, differentiate into odontoblasts and facilitate formation of reactionary dentine. Dental pulp progenitor cell/MSC differentiation is controlled at given niches. Among dental NCPs, dentine sialophosphoprotein (DSPP) is a member of the small integrin-binding ligand N-linked glycoprotein (SIBLING) family, whose members share common biochemical characteristics such as an Arg-Gly-Asp (RGD) motif. DSPP expression is cell- and tissue-specific and highly seen in odontoblasts and dentine. DSPP mutations cause hereditary dentine diseases. DSPP is catalysed into dentine glycoprotein (DGP)/sialoprotein (DSP) and phosphoprotein (DPP) by proteolysis. DSP is further processed towards active molecules.
DPP contains an RGD motif and abundant Ser-Asp/Asp-Ser repeat regions. DPP-RGD motif binds to integrin αVβ3 and activates intracellular signalling via mitogen-activated protein kinase (MAPK) and focal adhesion kinase (FAK)-ERK pathways. Unlike other SIBLING proteins, DPP lacks the RGD motif in some species. However, DPP Ser-Asp/Asp-Ser repeat regions bind to calcium-phosphate deposits and promote hydroxyapatite crystal growth and mineralisation via calmodulin-dependent protein kinase II (CaMKII) cascades.
DSP lacks the RGD site but contains signal peptides. The tripeptides of the signal domains interact with cargo receptors within the endoplasmic reticulum that facilitate transport of DSPP from the endoplasmic reticulum to the extracellular matrix. Furthermore, the middle- and COOH-terminal regions of DSP bind to cellular membrane receptors, integrin β6 and occludin, inducing cell differentiation. The present review may shed light on DSPP roles during odontogenesis.

Key Words: Dentine, dental mesenchymal stem cells, dental caries, dentine regeneration, small integrin-binding ligand N linked glycoproteins, dentine sialoprotein, dentine glycoprotein, dentine phosphoprotein, dentine, dentine sialophosphoprotein.

Publication date: July 18th 2021

Article download: Pages 43-62 (PDF file)

Twitter Facebook Google LinkedIn Print